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Abstract

We propose a novel method for temporally pooling
frames in a video for the task of human action recogni-
tion. The method is motivated by the observation that there
are only a small number of frames which, together, con-
tain sufficient information to discriminate an action class
present in a video, from the rest. The proposed method
learns to pool such discriminative and informative frames,
while discarding a majority of the non-informative frames
in a single temporal scan of the video. Our algorithm does
so by continuously predicting the discriminative importance
of each video frame and subsequently pooling them in a
deep learning framework. We show the effectiveness of our
proposed pooling method on standard benchmarks where
it consistently improves on baseline pooling methods, with
both RGB and optical flow based Convolutional networks.
Further, in combination with complementary video repre-
sentations, we show results that are competitive with respect
to the state-of-the-art results on two challenging and pub-
licly available benchmark datasets.

1. Introduction

Rapid increase in the number of digital cameras, notably
in cellphones, and cheap internet with high data speeds, has
resulted in a massive increase in the number of videos up-
loaded onto the internet [3]. Most of such videos, e.g. on
social networking websites, have humans as their central
subjects. Automatically predicting the semantic content of
videos, e.g. the action the human is performing, thus, be-
comes highly relevant for searching and indexing in this fast
growing database. In order to perform action recognition in
such videos, algorithms are required that are both easy and
fast to train and, at the same time, are robust to noise, given
the real world nature of such videos.
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Figure 1: (Top) Illustration of proposed AdaScan . It
first extracts deep features for each frame in a video and
then passes them to the proposed Adaptive Pooling mod-
ule, which recursively pools them while taking into account
their discriminative importances—which are predicted in-
side the network. The final pooled vector is then used
for classification. (Bottom) Predicted discriminative impor-
tance for a video that was downloaded from the internet1and
ran through AdaScan trained on UCF101. The numbers
and bars on the bottom indicate the predicted importance
∈ [0, 1] and the timeline gives the relative frame position in
percentile (see Section 4.4).

A popular framework for performing human action
recognition in videos is using a temporal pooling opera-
tion to ‘squash’ the information from different frames in
a video into a summary vector. Mean and max pool-

1Video downloaded from https://www.youtube.com/watch?
v=KnHUAc20WEU and cropped from 3–18 seconds
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ing, i.e. taking the average or the coordinatewise max of
the (features of the) frames, are popular choices, both
with classic ‘shallow’ as well as recent ‘deep’ methods
[31, 40, 18, 43]. However, these pooling methods consider
all frames equally and are not robust to noise, i.e. to the
presence of video frames that do not correspond to the tar-
get action [22, 7, 1, 20, 47, 51]. This results in a loss in
performance as noted by many host algorithms, with both
shallow and deep pipelines e.g. [2, 7, 30, 20]. Several meth-
ods have proposed solutions to circumvent the limitations
of these pooling methods. Such solutions either use Latent
Variable Models [22, 36, 9, 30, 19], which require an ad-
ditional inference step during learning, or employ a variant
of Recurrent Neural Networks (RNN) [29, 49] which have
intermediate hidden states that are not immediately inter-
pretable. In this work we propose a novel video pooling al-
gorithm that learns to dynamically pool video frames for ac-
tion classification, in an end-to-end learnable manner, while
producing interpretable intermediate ‘states’. We name our
algorithm AdaScan since it is able to both adaptively pool
video frames, and make class predictions in a single tempo-
ral scan of the video. As shown in Figure 1, our algorithm
internally predicts the discriminative importance of each
frame in a video and uses these states for pooling. The pro-
posed algorithm is set in a weakly supervised setting for ac-
tion classification in videos, where labels are provided only
at video-level and not at frame-level [22, 51, 30, 20, 2]. This
problem is extremely relevant due to the difficulty and non-
scalability of obtaining frame-level labels. The problem is
also very challenging as potentially noisy and untrimmed
videos may contain distractive frames that do not belong to
the same action class as the overall video.

Algorithms based on the Multiple Instance Learning
(MIL) framework try to solve this problem by alternating
between spotting relevant frames in videos and (re-)learning
the model. Despite obtaining promising results, MIL is (i)
prone to overfitting, and (ii) by design, fails to take into ac-
count the contributions of multiple frames together, as noted
recently [30, 19]. More recently, Long Short Term Memory
(LSTM) networks have also been used for video classifica-
tion. They encode videos using a recurrent operation and
produce hidden vectors as the final representations of the
videos [29, 49, 6]. Despite being able to model reasonably
long-term temporal dependencies, LSTMs are not very ro-
bust to noise and have been shown to benefit from explicit,
albeit automatic, removal of noisy frames [10, 51]. The pro-
posed algorithm does not require such external noisy frame
pruning as it does so by itself while optimizing the classifi-
cation performance in a holistic fashion.

In summary we make the following contributions. (1)
We propose a novel approach for human action classifica-
tion in videos that (i) is able to identify informative frames
in the video and only pool those, while discarding oth-

ers, (ii) is end-to-end trainable along with the representa-
tion of the images, with the final objective of discrimina-
tive classification, and (iii) works in an inductive setting,
i.e. given the training set it learns a parametrized function
to pool novel videos independently, without requiring the
whole training set, or any subset thereof, at test time. (2)
We validate the proposed method on two challenging pub-
licly available video benchmark datasets and show that (i) it
consistently outperforms relevant pooling baselines and (ii)
obtains state-of-the-art performance when combined with
complimentary representations of videos. (3) We also ana-
lyze qualitative results to gain insights to the proposed al-
gorithm and show that our algorithm achieves high perfor-
mance while only pooling from a subset of the frames.

2. Related Work
Many earlier approaches relied on using a Bag of Words

(BoW) based pipeline. Such methods typically extracted
local spatio-temporal features and encoded them using a
dictionary [18, 41, 5, 28, 25, 40]. One of the first works
[18] described a video with BoW histograms that encoded
Histograms of Gradients (HoG) and Histograms of Flow
(HoF) features over 3D interest points. Later works im-
proved upon this pipeline in several ways [23, 46] by us-
ing dense sampling for feature extraction [41], describing
trajectories instead of 3D points [13, 39], and using bet-
ter pooling and encoding methods [46, 25, 23]. Improving
upon these methods Wang et al. [40] proposed the Improved
Dense Trajectories (iDT) approach that showed significant
improvement over previous methods by using a combina-
tion of motion stabilized dense trajectories, histogram based
features and Fisher Vector (FV) encodings with spatio-
temporal pyramids. Some recent methods have improved
upon this pipeline by either using multi-layer fisher vectors
[24] or stacking them at multiple temporal scales [17]. All
of these approaches rely on the usage of various local fea-
tures combined with standard pooling operators.

While the above methods worked with an orderless rep-
resentation, another class of methods worked on explic-
itly exploiting the spatial and temporal structure of human
activities. Out of these, a set of methods have used la-
tent structured SVMs for modeling the temporal structure
in human activities. These methods typically alternate be-
tween identifying discriminative frames (or segments) in a
video (inference step) and learning their model parameters.
Niebles et al. [22] modeled an activity as a composition of
latent temporal segments with anchor positions that were in-
ferred during the inference step. Tang et al. [36] improved
upon Niebles et al. by proposing a more flexible approach
using a variable duration HMM that factored each video
into latent states with variable durations. Other approaches
have also used MIL and its variants to model discrimina-



tive frames in a video, with or without a temporal struc-
ture [26, 30, 8, 50, 42, 20, 27]. Most related to our work
is the dynamic pooling appoach used by Li et al. [20] who
used a scoring function to identify discriminative frames in
a video and then pooled over only these frames. In con-
trast, our method does not solve an inference problem, and
instead explicitly predicts the discriminative importance of
each frame and pools them in a single scan. Our work is
also inspired by an early work by Satkin et al. [27] who
identified the best temporal boundary of an action, defined
as the minimum number of frames required to classify this
action, and obtained a final representation by pooling over
these frames.

Despite the popularity of deep Convolutional Neural
Networks (CNN) in image classification, it is only re-
cently that deep methods have achieved performance com-
parable to shallow methods for video action classification.
Early approaches used 3D convolutions for action recog-
nition [12, 14]; while these showed decent results on the
task, the top performances were still obtained by the tradi-
tional non-deep methods. Simonyan et al. [31] proposed the
two-stream deep network that combined a spatial network
(trained on RGB frames) and a temporal network (trained
on stacked flow frames) for action recognition. Ng et al.
[49] highlighted a drawback in the two-stream network that
uses a standard image CNN instead of a specialized net-
work for training videos. This results in the two-stream
network not being able to capture long-term temporal in-
formation. They proposed two deep networks for action
classification by (i) adding standard temporal pooling op-
erations in the network, and (ii) using LSTMs for feature
pooling. Recent methods have also explored the use of
LSTMs for both predicting action classes [21, 29, 34, 21]
and video caption generation [6, 48]. Some of these tech-
niques have also combined attention with LSTM to focus
on specific parts of a video (generally spatially) during state
transitions [21, 29, 48]. Our work bears similarity to these
attention based frameworks in predicting the relevance of
different parts of the data. However it differs in several
aspects: (i) The attention or disriminative importance uti-
lized in our work is defined over temporal dimension vs.
the usual spatial dimension, (ii) we predict this importance
score in an online fashion, for each frame, based on the cur-
rent frame and already pooled features, instead of predicting
them together for all the frames [48], and (iii) ours is a sim-
ple formulation that combines the prediction with standard
mean pooling operation to dynamically pool frame-wise
video features. Our work is also related to LSTMs through
its recursive formulation but differs in producing a clearly
interpretable intermediate state along with the importance
of each frame vs. LSTM’s generally non-interpretable hid-
den states. It is also worth mentioning the work on Rank
Pooling and Dynamic Image Networks that use a ranking

function to pool a video [1, 7]. However, compared to cur-
rent methods their approach entails a non-trivial interme-
diate step that requires solving a ranking formulation for
pooling each vector.

3. Proposed Approach
We now describe the proposed approach, that we call

AdaScan (Adaptive Scan Pooling Network), in detail. We
denote a video as

X = [x1, . . . , xT ], xt ∈ R224×224×K , (1)

with each frame xt either represented as RGB images (K =
3), or as a stack of optical flow images of neighbouring
frames [31] (K = 20 in our experiments). We work in a
supervised classification setting with a training set

X = {(Xi, yi)}Ni=1 ⊂ R224×224×K×T × {1, . . . , C}, (2)

where Xi is a training video and yi is its class label (from
one of the C possible classes). In the following, we drop
the subscript i, wherever it is not required, for brevity.

AdaScan is a deep CNN augmented with an special-
ized pooling module (referred to as ‘Adaptive Pooling’) that
scans a video and dynamically pools the features of se-
lect frames to generate a final pooled vector for the video,
adapted to the given task of action classification. As shown
in Figure 1, our model consists of three modules that are
connected to each other sequentially. These three modules
serve the following purposes, respectively: (i) feature ex-
traction, (ii) adaptive pooling, and (iii) label prediction. The
feature extractor module comprises of all the convolutional
layers along with the first fully connected (FC-6) layer of
the VGG-16 network of Simonyan et al. [32]. This mod-
ule is responsible for extracting deep features from each
frame xt of a video, resulting in a fixed dimensional vec-
tor, denoted as φ(xt) ∈ R4096. The purpose of the Adap-
tive Pooling module is to selectively pool the frame features
by aggregating information from only those frames that are
discriminative for the final task, while ignoring the rest. It
does so by recursively predicting a score that quantifies the
discriminative importance of the current frame, based on (i)
the features of the current frame, and (ii) the pooled vector
so far. It then uses this score to update the pooled vector
(described formally in the next section). This way it ag-
gregates discriminative information only by pooling select
frames, whose indices might differ for different videos, to
generate the final dynamically pooled vector for the video.
This final vector is then normalized using an `2 normaliza-
tion layer and the class labels are (predicted) using a FC
layer with softmax function. We now describe the adaptive
pooling module of AdaScan in more detail and thereafter
provide details regarding the loss function and learning pro-
cedure.



3.1. Adaptive Pooling

This is the key module of the approach which dynami-
cally pools the features of the frames of a video. It does a
temporal scan over the video and pools the frames by in-
ferring the discriminative importance of the current frame
feature given the feature vector and the pooled video vector
so far. In the context of video classification, we want the
predicted discriminative importance of a frame to be high if
the frame contains information positively correlated to the
class of the video, and possibly negatively correlated to the
rest of the classes, and low if the frame is either redundant,
w.r.t. already pooled frames, or does not contain any useful
information for the classification task. We note that this def-
inition of importance is similar to the notion of discrimina-
tiveness of a particular part of the data as used in prior MIL
based methods. However, contrary to MIL based methods,
which effectively weight the frames with a one-hot vector,
our algorithm is naturally able to focus on more than one
frame in a video, if required, while explicitly outputting the
importances of all the frames in an online fashion.

Let us denote the adaptive pooled vector till the initial t
frames for a video X as ψ(X, t). The aim is now to com-
pute the vector after pooling all the T frames in a video
i.e. ψ(X,T ). The Adaptive Pooling module implements the
pooling by recursively computing two operations. The first
operation, denoted as fimp, predicts the discriminative im-
portance, γt+1 ∈ [0, 1], for the next i.e. (t+1)th frame given
its CNN feature, φ(xt+1), and the pooled features till time
t, ψ(X, t). We denote the importance scores of the frames
of a video as a sequence of reals Γ = {γ1, . . . , γT } ∈ [0, 1].
The second operation is a weighted mean pooling operation
that calculates the new pooled featuresψ(X, t+1) by aggre-
gating the previously pooled features with the features from
current frame and its predicted importance. The operations
are formulated as:

γt+1 = fimp(ψ(X, t), φ(xt+1)) (3)

ψ(X, t+ 1) =
1

γ̂t+1
(γ̂tψ(X, t) + γt+1φ(xt+1)) (4)

where, γ̂p =

p∑
k=1

γk (5)

Effectively, at tth step the above operation does a
weighted mean pooling of all the frames of a video, with
the weights of the frame features being the predicted dis-
criminative importance scores γ1, . . . , γt.

We implement the attention prediction function fimp(·)
as a Multilayer Perceptron (MLP) with three layers. As the
underlying operations for fimp(·) rely only on standard lin-
ear and non-linear operations, they are both fast to compute
and can be incorporated easily inside a CNN network for
end-to-end learning. In order for fimp(·) to consider both

the importance and non-redundancy of a frame we feed the
difference between the current pooled features and features
from the next frame to the Adaptive Pooling module. We
found this simple modification, of feeding the difference,
to not only help reject redundant frames but also improve
generalization. We believe this is due to the fact that the
residual might be allowing the Adaptive Pooling module to
explicitly focus on unseen features while making a decision
on whether to pool them (additively) or not.

Owing to its design, our algorithm is able to maintain the
simplicity of a mean pooling operation while predicting and
adapting to the content of each incoming frame. Moreover
at every timestep we can easily interpret both the discrimi-
native importance and the pooled vector for a video, leading
to an immediate extension to an online/streaming setting,
which is not the case for most recent methods.

3.2. Loss Function and Learning

We formulate the loss function using a standard cross
entropy loss LCE between the predicted and true labels. In
order to direct the model towards selecting few frames from
a video, we add an entropy based regularizer LE over the
predicted scores, making the full objective as

L(X, y) = LCE(X, y) + λLE(Γ) (6)

LE(Γ) = −
∑
k

eγk

N
log

(
eγk

N

)
(7)

γk, λ ≥ 0, N =
∑
t

eγt (8)

The regularizer minimizes the entropy over the normal-
ized(using softmax) discriminative scores. Such a regular-
izer encourages a peaky distribution of the importances, i.e.
it helps select only the discriminative frames and discard
the non discriminative ones when used with a discrimina-
tive loss. We also experimented with the popular sparsity
promoting `1 regularizer, but found it to be too aggressive
as it led to selection of very few frames, which adversely
affected the performance. The parameter λ is a trade-off
parameter which balances between a sparse selection of
frames and better minimization of the cross entropy clas-
sification loss term. If we set λ to relatively high values we
expect fewer number of frames being selected, which would
make the classification task harder e.g. single frame per
video would make it same as image classification. While, if
the value of λ is relatively low, the model is expected to se-
lect larger number of frames and also possibly overfit. We
show empirical results with varying λ in the experimental
Section 4.2.3.

4. Experimental Results
We empirically evaluate our approach on two challeng-

ing publicly available human action classification datasets.



We first briefly describe these datasets, along with their ex-
perimental protocol and evaluation metrics. We then pro-
vide information regarding implementation of our work.
Thereafter we compare our algorithm with popular com-
petetive baseline methods. We also study the effect of the
regularization used in AdaScan and compare our approach
with previous state-of-the-art methods on the two datasets.
We finally discuss qualitative results to provide important
insights to the proposed method.

HMDB512 [16] dataset contains around 6800 video clips
from 51 action classes. These action classes cover wide
range of actions – facial actions, facial action with object
manipulations, general body movement, and general body
movements with human interactions. This dataset is chal-
lenging as it contains many poor quality video with signif-
icant camera motions and also the number of samples are
not enough to effectively train a deep network [31, 44]. We
report classification accuracy for 51 classes across 3 splits
provided by the authors [16].

UCF1013 [33] dataset contains 13320 videos from 101 ac-
tion classes that are divided into 5 categories- human-object
interaction, body-movement only, human-human interac-
tion, playing musical instruments and sports. Action classi-
fication in this datasets is challenging owing to variations in
pose, camera motion, viewpoint and spatio-temporal extent
of an action. Owing to these challenges and higher number
of samples this dataset is often used for evaluation in previ-
ous works. We report classification accuracy for 101 classes
across the 3 train/test splits provided by the authors [33].

4.1. Implementation Details

To implement AdaScan , we follow Simonyan et al.
[31], and use a two-stream network that consists of a spatial
and a temporal 16 layer VGG network [32]. We generate a
20 channel optical flow input, for the temporal network, by
stacking both X and Y direction optical flows from 5 neigh-
bouring frames in both directions [31, 44]. We extract the
optical flow using the tool4 provided by Wang et al. [44],
that uses TV-L1 algorithm and discretizes the optical flow
fields in the range of [0, 255] by a linear transformation. As
described in Section 3 our network trains on a input video
containing multiple frames instead of a single frame as was
done in the two-stream network [31]. Since videos vary in
the number of frames and fitting an entire video on a stan-
dard GPU is not possible in all cases, we prepare our input
by uniformly sampling 25 frames from each video. We aug-
ment our training data by following the multiscale cropping
technique suggested by [44]. For testing, we use 5 random

2http://serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/

3http://crcv.ucf.edu/data/UCF101.php
4https://github.com/wanglimin/dense_flow

samples of 25 frames extracted from the video, and use 5
crops of 224 × 224 along with their flipped versions. We
take the mean of these predictions for the final prediction
for a sample.

We implement the Adaptive Pooling layer’s fimp(·)
function, as described in Section 3, using a three layer MLP
with tanh non linearities and sigmoid activation at the fi-
nal layer. We set the initial state of the pooled vector to be
same as the features of the first frame. We found this ini-
tialization to be stable as compared to initialization with a
random vector. We initialize the components of the Adap-
tive Pooling module using initialization proposed by Glorot
et al. [11]. We also found using the residual of the pooled
and current frame vector as input to the Adaptive Pooling
module to work better than their concatenation.

We initialize the spatial network for training UCF101
from VGG-16 model [32] trained on ImageNet [4]. For
training the temporal network on UCF101, we initialize its
convolutional layers with the 16000 iteration snapshot pro-
vided by Wang et al. [44]. For training HMDB51 we ini-
tialize both the spatial and temporal network by borrowing
the convolutional layer weights from the corresponding net-
work trained on UCF101. During experiments we observed
that reinitializing the Adaptive Pooling module randomly
performed better than initializing with the weights from
the network trained on UCF101. We also tried initializ-
ing the network trained on HMDB51 with the snapshot pro-
vided by [44] and with an ImageNet pre-trained model but
found their performance to be worse. Interestingly, from the
two other trials, the model initialized with ImageNet per-
formed better, showing that training on individual frames
for video classification might lead to less generic features
due to the noise injected by the irrelevant frames for an ac-
tion class. We found it extremely important to use sepa-
rate learning rates for training the Adaptive Pooling module
and fine-tuning the Convolutional layers. We use the Adam
solver[15] with learning rates set to 1e− 3 for the Adaptive
Pooling module and 1e−6 for the Convolutional layers. We
use dropout with high (drop) probabilities (= 0.8) both after
the FC-6 layer and the Adaptive Pooling module and found
it essential for training. We run the training for 6 epochs
for the spatial network on both datasets. We train the tem-
poral network, for 2 epochs on UCF101 and 6 epochs on
HMDB51. We implement our network using the tensorflow
toolkit5 and plan to release our code if the paper is accepted
for publication.

Baselines and complementary features. For a fair com-
parison with standard pooling approaches, we implement
three baselines methods using the same deep network as
AdaScan with end-to-end learning. We implement mean
and max pooling by replacing the Adaptive Pooling mod-

5https://www.tensorflow.org

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
http://crcv.ucf.edu/data/UCF101.php
https://github.com/wanglimin/dense_flow


Network Max Pool MIL Mean Pool AdaScan

Spatial 77.2 76.7 78.0 79.1
Temporal 80.3 79.1 80.8 81.7

Table 1: Comparison with baselines on UCF101 - Split 1 in
terms of multiclass classification accuracies.

ule with mean and max operations. For implementing MIL,
we first compute classwise scores for each frame in a video
and then take a max over the classwise scores across all
the frames prior to the softmax layer. For complimentary
features we compute results with improved dense trajecto-
ries (iDT) [40] and 3D convolutional (C3D) features [37]
and report performance using weighted late fusion. We ex-
tract the iDT features using the executables provided by the
authors [40] and use human bounding boxes for HMDB51
but not for UCF101. We extract FV for both datasets using
the implementation provided by Chen et al. [35]. For each
low-level feature6, their implementation first uses Principal
Component Analysis (PCA) to reduce the dimensionality to
half and then trains a Gaussian Mixture Models (GMM).
The GMM dictionaries, of size 512, are used to extract FV
by using the vlfeat library [38]. The final FV is formed
by applying both power normalization and `2 normaliza-
tion to per features FV and concatenating them. Although
Chen et al. have only provided the GMMs and PCA matri-
ces for UCF101, we also use them for extracting FVs for
HMDB51. For computing C3D features we use the Caffe
implementation provided by Tran et al. [37] and extract fea-
tures from the FC-6 layer over a 16 frame window. We
compute final feature for each video by max pooling all the
features followed by `2 normalization.

4.2. Quantitative Results

4.2.1 Comparison with Pooling Methods

Table 1 gives the performances of AdaScan along with
three other commonly used pooling methods as baselines
i.e. max pooling (coordinate-wise max), MIL (multiple in-
stance learning) and mean pooling, on the Split 1 of the
UCF101 dataset. MIL is the weakest, followed by max
pooling and then mean pooling (76.7, 77.2, 78.0 resp. for
spatial network and 79.1, 80.3, 80.8 for the temporal one),
while the proposed AdaScan does the best (79.1 and 81.7
for spatial and temporal networks resp.). The trends ob-
served here were typical — we observed that, with our
implementations, among the three baselines, mean pool-
ing was consistently performing better on different settings.
This could be the case since MIL is known to overfit as a re-
sult on focussing only on a single frame in a video [30, 19],
while max pooling seems to fail to summarize relevant parts
of an actions (and thus overfit) [7]. Hence, in the following
experiments we mainly compare with mean pooling.

6Trajectory, HOG, HOF, Motion Boundary Histograms (X and Y)

Spatial network Temporal network
Split Mean Pool AdaScan Mean Pool AdaScan

1 78.0 79.1 80.8 82.3
2 77.2 78.2 82.7 84.1
3 77.4 78.4 83.7 83.7

Avg 77.6 78.6 82.4 83.4
UCF101 [33]

Spatial network Temporal network
Split Mean Pool AdaScan Mean Pool AdaScan

1 41.3 41.8 48.8 49.3
2 40.3 41.0 48.8 49.8
3 41.3 41.4 48.3 48.5

Avg 40.9 41.4 48.6 49.2
HMDB51 [16]

Table 2: Comparison of AdaScan with mean pooling. We
report multiclass classification accuracies.

4.2.2 Detailed Comparison with Mean Pooling

Table 2 gives the detailed comparison between the best
baseline of mean pooling with the proposed AdaScan ,
on the two datasets UCF101 and HMDB51, as well as, the
two networks, spatial and temporal. We observe that the
proposed AdaScan consistently performs better in all but
one case out of the 12 cases. In the only case where it
does not improve, it does not deteriorate either. The per-
formance improvement is more with the UCF101 dataset,
i.e. 77.6 to 78.6 for the spatial network and 82.4 to 83.4 for
the temporal network, on average for the three splits of the
datasets. The improvements for the HMDB51 dataset are
relatively modest, i.e. 40.9 to 41.4 and 48.6 to 49.2 respec-
tively. Such difference in improvement is to be somewhat
expected. Firstly HMDB51 has fewer samples compared
to UCF101 for training AdaScan . Also, while UCF101
dataset has actions related to sports, the HMDB51 dataset
has actions from movies. Hence, while UCF101 actions are
expected to have smaller sets of discriminative frames, e.g.
throwing a basketball vs. just standing for it, compared to
the full videos, HMDB51 classes are expected to have the
discriminative information spread more evenly over all the
frames. We could thus expect more improvements in the
former case, as observed, by eliminating non-discriminative
frames cf. the later where there is not much to discard. A
similar trend can be seen in the classes that perform better
with AdaScan cf. mean pooling and vice-versa (Figure 2).
Classes such as “throw discuss” and “balance beam”, which
are expected to have the discriminative information concen-
trated on a few frames, do better with AdaScan while oth-
ers such as “juggling balls” and “jump rope”, where the ac-
tion is continuously evolving or even periodic and the in-
formation is spread out in the whole of the video, do better
with mean pooling.



Two- Very Add.
Method stream deep LSTM Attn Opti. UCF101 HMDB51
Simonyan et al. [31] X 88.0 59.4
Wang et al. [44] X 88.0 59.4
Yue et al. [49] X X 88.2 –
Yue et al. [49] X X X 88.6 –
Wang et al. [43] X X 90.3 63.2
Sharma et al. [29] X X X 77.0∗ 41.3
Li et al. [21] X X X X 89.2 56.4
Bilen et al. [1] X 89.1 65.2
Wang et al. [45] X X X 92.4 62.0
Zhu et al. [51] X X X 93.1 63.3
Tran et al. [37] 3D convolutional filters 83.4 53.9
iDT [40] shallow 84.3 58.4
MIFS [17] shallow 88.5 63.8
AdaScan X X 89.4 54.9

+ iDT late fusion 91.3 61.0
+ iDT + C3D late fusion 93.2 66.9

Table 3: Comparison with existing methods (Attn. – Spatial Attention, Add. Opti.
– Additional Optimization). (∗ Results are as reported by [21])
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Figure 2: Comparison of AdaScan with
mean pooling – example classes where
mean pooling is better (blue, top four)
and vice-versa (red, all but top four).
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Figure 3: Effect of regularization parameter λ

4.2.3 Effect of Regularization Strength

As discussed in the Section 3.2 above, we have a hyper-
parameter λ ∈ R+ which controls the trade-off between
noisy frame pruning and model fitting. We now discuss
the effect of the λ hyperparameter. To study its effect we
trained our spatial network with different λ values on the
HMDB51 dataset for 3 epochs to produce the shown re-
sults. We see in Figure 3 that for very low regularization
(1e2 to 1e4), the model gives an importance (i.e. value of
the coordinate corresponding to the frame in the normalized
vector Γ of weights) of greater than 0.5 to only about 50%
of frames, showing that the architecture in itself holds the
capability to filter out frames, probably due to the residual
nature of the input to the Adaptive Pooling module. As we
increase regularization strength from 1e6 to 1e7 we see that
we can achieve a drastic increase in sparsity by allowing
only a small drop in performance. Subsequently, there is a
constant increase in sparsity and corresponding drop in per-
formance. The change in sparsity and performance reduces
after 1e7 because we clip gradients over a fixed norm, thus

disallowing very high regularization gradients to flow back
through the network. The λ hyperparameter therefore al-
lows us to control the effective number of selected frames
based on the importances predicted by the model.

4.3. Comparison with State-of-the-Art

Our model achieves performance competitive with the
current state-of-the-art methods (Table 3) when combined
with complementary video features on both UCF101 and
HMDB51 datasets. We see that AdaScan itself either out-
performs or is competitive w.r.t. other methods employing
recurrent architectures (LSTMs) with only a single straight-
forward recurrent operation, without having to employ spa-
tial attention, e.g. (on UCF101) 89.4 for AdaScan vs.
89.2, 77.0 for [21, 29], or deep recurrent architectures with
significant extra pre-training, like 88.6 for [49], demon-
strating the effectiveness of the idea. We also show im-
provements over traditional shallow features, i.e. iDT [43]
and MIFS [17], which is in tune with the recent trends in
computer vision. Combined with complementary iDT fea-
tures the performance of AdaScan increases to 91.3, 61.0
from 89.4, 54.9, which further goes up to 93.2, 66.9 for the
UCF101 and HMDB51 datasets respectively when com-
bined with C3D features. These are competitive with the
existing state-of-the-art results on these datasets.

4.4. Qualitative Results

Figure 4 shows some typical cases (four test videos from
split 1 of UCF101) visualized with the output from the pro-
posed AdaScan algorithm. Each frame in these videos
is shown with the discriminative importance (value of the
γt ∈ [0, 1]) predicted by AdaScan as a red bar on the bot-
tom of the frame along with the relative (percentile) loca-
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Figure 4: Visualizations of AdaScan frame selection. The numbers and red bars below the frames indicate the importance
weight of the frames. The timeline gives the position of the frame in terms of the percentile of total number of frames in the
video (best seen in colour).

tion of the frame in the whole video. In the “basketball”
example we observe that AdaScan selects the right tem-
poral boundaries of the action by assigning higher scores
to frames containing the action. In the “tennis–swing” ex-
ample, AdaScan selects around three segments in the clip
that seem to correspond to (i) movement to reach the ball,
(ii) hitting the shot and (iii) returning back to center of the
court. We also see a similar trend in the “floor–gymnastics”
example, where AdaScan selects the temporal parts corre-
sponding to (i) initial preparation, (ii) running and (iii) the
final gymnastic act. Such frame selections resonate with
previous works that have highlighted the presence of gener-
ally 3 atomic actions (or actoms) in actions classes that can
be temporally decomposed into finer actions [8]. We also
see an interesting property in the “punch” example, where
AdaScan assigns higher scores to frames where the boxers
punch each other. Moreover, it assigns a moderate score of
0.2 to a frame where a boxer makes a failed punch attempt.
We have also shown outputs on a video (in Figure 1) that
contains “hammer throw” action and was downloaded from
the internet. These visualizations strengthen our claim that
AdaScan is able to adaptively pool frames in a video, by
predicting discriminativeness of each frame, while remov-
ing frames that are redundant or non-discriminative. We
further observe from these visualizations that AdaScan
also implicitly learns to decompose actions from certain

classes into simpler sub-events.

5. Conclusion
We presented an adaptive temporal pooling method,

called AdaScan , for the task of human action recogni-
tion in videos. This was motivated by the observation that
many frames are irrelevant for the recognition task as they
are either redundant or non-discriminative. The proposed
method addresses this, by learning to dynamically pool dif-
ferent frames for different videos. It does a single temporal
scan of the video and pools frames in an online fashion. The
formulation was based on predicting importance weights of
the frames which determine their contributions to the final
pooled descriptor. The weight distribution was also regular-
ized with an entropy based regularizer which allowed us to
control the sparsity of the pooling operation which in turn
helped control the overfitting of the model. We validated
the method on two challenging publicly available datasets
of human actions, i.e. UCF101 [33] and HMDB51 [16]. We
showed that the method outperforms baseline pooling meth-
ods of max pooling and mean pooling. It was also found
to be better than Multiple Instance Learning (MIL) based
deep networks. We also show improvements over previous
deep networks that used LSTMs with a much simpler and
interpretable recurrent operation. We also showed that the
intuitions for the design of the methods were largely val-



idated by qualitative results. Finally, in combination with
complementary features, we also showed near state-of-the-
art results with the proposed method.
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