
MERGING POINT CLOUDS
 FROM MULTIPLE KINECTS

Nishant Rai
13th July, 2016
CARIS Lab
University of British Columbia

What do we want to do? : Use information (point clouds) from multiple (2+)

Kinects to gain better insight about the scene. Involves aligning the point clouds

extracted from the Kinects.

Problem Statement : Given multiple Kinects and the corresponding point clouds,

align the Point clouds to get a more ‘complete’ view of the scene.

Introduction

Introduction (Cont.)

Use Multi-View Information to get the complete picture

Image taken
from [3]

Challenges Involved :

- Getting aligned Point Clouds from unaligned ones
- Difference in scale of the Point Clouds.
- Unaware of how the coordinates transform between each camera.

Introduction (Cont.)

We’re here! Want to get here!

Image taken
from [7]

Pinhole Camera Model

A pinhole camera is a simple camera

without a lens and with a single small

aperture.

Light rays pass through the aperture and

project an inverted image on the opposite

side of the camera.

Tip: Think of the virtual image plane as

being in front of the camera and

containing the upright image of the scene.

Image taken from [4].
Content inspired from [4]

Pinhole Camera Model (Cont.)

- The pinhole camera parameters are represented in a

4-by-3 matrix called the camera matrix. This matrix

maps the 3D world scene into the image plane.

- The calibration algorithm calculates the camera

matrix using the extrinsic and intrinsic parameters.

- The extrinsic parameters represent the location of

the camera in the 3D scene.

- The intrinsic parameters represent the optical

center and focal length of the camera

Image taken from [4].
Content inspired from [4]

Pinhole Camera Model (Cont.)

The world points are transformed to camera coordinates using the extrinsics parameters.

The camera coordinates are mapped into the image plane using the intrinsics parameters.
Image taken

from [4]

Basic Approach

Steps Involved:

- Use a calibration target. Generally a chessboard (Why?).

- Detect the target in each view.

- Identify the relevant transform between the camera and the calibration model.

- Compute Homography between model and image

- Use intrinsics matrix to extract the extrinsics.

- Construct the transformation.

- Use the computed transformation to link points in different views.

Chessboard Corner Detection

A variety of methods to perform this task, so not going into

the details of the algorithms used.

Many libraries and functions

for detecting the corners.

Motivates us to choose a

chessboard as the calibration

target.

We use a 6x7 chessboard target.

Image taken
from [2]

Homography Computation

Basic Notations:

- A 2D point is represented by . A 3D point is represented by .

- We create augmented vectors by adding 1 as the last element, denoted by,

- The relationship between a 3D point M and its image projection m is given by,

 (s is the scale parameter)

Homography Computation (Cont.)

Let’s look at the relation between a model

point and its image.

Without loss of generality, we assume the

model plane is on Z = 0 of the world

coordinate system.

We denote the i
th

 column of the rotation

matrix R by .

Credits to [1]

Let, , and .

Then, the equation can be written as

Stacking all the equations together (n equations for n chessboard points) we get matrix L.

Homography Computation (Cont.)

This finally gives us the equation .

So, we solve the system , with x as the variable.

The solution to this equation can easily be found using

Singular Value Decomposition.

We reconstruct H using the computed x.

Credits to [1]
and [5]

Extracting Extrinsics
Constructing the Transformation

Estimating the rotation and translation

matrices.

Use the homography and the intrinsics

matrix A to recover the extrinsics.

The intrinsics (A) of the Kinects have

already been computed and are

directly used.

Careful!

Extracting Extrinsics
Constructing the Transformation (Cont.)

We have this.. But we want this!

Image taken
from [4]

Once we have matrix E = [R, t]. We get the desired transformation by adding [0, 0, 0, 1]

as the last row to E. Let’s call this transformation matrix M.

Note:

- There are actually two possible ways to construct R.

- But only one is correct! How do we find the correct solution?
- Hit and Trial
- Choose a 3D point which should be in front of the camera. Multiply it with

R and check if it still remains in the front. If it does, then that’s our solution.

Constructing the Transformation

and

Merging Information from Kinects

Now that we have computed the transformation matrix (

M
i

) for each camera i. Let’s focus on the final task of

merging the information from different Kinects.

Assume that we only have two cameras for now.

We need to get the transformation between them (say

camera 1 and 1)

Simply, invert M1 and multiply by M2 to get M12 (i.e.

M1
-1M2).

This can be repeated for other pairs too. Giving us a way

to use information from all the cameras simultaneously!

Image taken
from [6]

Fixing Noisy Rotation Matrices:

Why is R not a correct Rotation matrix? : Mainly due to the real world. Lots of noise in our

data, causes the computations to be slightly off.

What do we mean by ‘fixing’ a Rotation matrix? : They’re supposed to follow certain rules,

namely, rotation matrices should be orthogonal i.e. AA
T

 = I

How do we fix it? : A possible fix involves Singular Value Decomposition.

From theory to implementation (Challenges)

Quick Summary

All you have to do is..

- Print a pattern and attach it to a planar surface.

- Detect the feature points in the images (Can use chessboard corners, lots of libraries and

functions available for the same)

- Estimate the extrinsic parameters using the method discussed earlier.

- Compute the transformation matrix (M
 i
) for each camera i.

- To get a transformation between two cameras (say 1 and 2), invert M1 and multiply by

M2 to get M12 (i.e. M1
-1M2).

References

1. Z. Zhang, "A flexible new technique for camera calibration :

 http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf

2. Chessboard Corner Detection : https://en.wikipedia.org/wiki/Chessboard_detection

3. Identity recognition using 4D Facial Dynamics : http://dynface4d.isr.uc.pt/database.php

4. What is Camera Calibration (MathWorks) :

 http://www.mathworks.com/help/vision/ug/camera-calibration.html

5. Zhang’s Camera Calibration :

 http://webserver2.tecgraf.puc-rio.br/~mgattass/calibration/zhang_latex/zhang.pdf

6. Chris Walker’s Blog, Stereo Vision :

 http://chriswalkertechblog.blogspot.ca/2014/03/stereo-vision-basics.html

7. Registration Technique for Aligning 3D Point Clouds : https://www.youtube.com/watch?v=Tn0JOVpFWzM

8. Distortion in Cameras : http://www.photocritic.org/articles/everything-about-camera-lenses

Thank You!
Questions?

