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Introduction

Project Aim: 

Detect and Classify relevant objects in the video. In case of 4-Wheelers localise and read 
the license plate.

Steps Involved: 

- Pre-Processing Video Stream
- Detection of Objects
- Object Classification
- Localising License Plate
- Recognizing Text (OCR)



Steps Involved (Detailed)

The detailed steps involved are as follows (The later slides discuss the topics in detail),

- Background detection
- Background Subtraction
- Identifying Objects
- Tracking Objects
- Object Classification
- Number Plate Localization
- OCR Text Detection



Background Detection

Background Computation:

1. Static background 2. Dynamic Background



Background Subtraction 

1. Subtracting the frames from the 
static background computed at start.

2. Subtracting the frames from the 
background which is dynamically updated 
with the video



Background Subtraction

3. Using the Gaussian Mixture-based Background/Foreground Segmentation 
Algorithm (MoG2 of OpenCV)



As mentioned in the previous slide. Object ‘detection’ is one of the most important parts 
in the workflow. As all the consequent stages depend upon it.

The popular object detection methods are mentioned below,
1. Interest Point based Detection: Find interesting points in images/objects express 

their respective localities. A few popular examples: SIFT features, Harris features.
2. Background Subtraction - Object detection can be achieved by building a 

representation of the scene called the background model and then finding 
deviations from the model for each incoming frame. 

3. Segmentation - The aim of image segmentation algorithms is to partition the image 
into perceptually similar regions. There has been work showing the closeness to 
multi object tracking (Region-based Segmentation and Object Detection)

Object Detection



Object Detection 
(Using Image Processing Operations)

We construct a background model and extract objects using the constructed model by 
considering deviations from it. Objects are detected using morphological operations.

The main reason for choosing to construct a background model is the fact that the 
security camera is still and thus a reasonable (accurate and nearly constant) background 
can be easily computed.

We use morphological operations because of the fast computation time involved and 
robustness and effectiveness of the proposed method (i.e. Invariance to Camera angle 
and Illumination)

The next slide contains the steps involved.



Object Detection 
(Using Machine Learning Techniques)

We ran the LPO (Learning to Propose Objects) code (CVPR ‘15) by Phillipe Kranhebuhl 
from UC Berkeley’s BVLC group to act as the object proposer in our videos.

-- An image on average took 25 seconds for processing which was too high for our 
requirements.

-- The results were very impressive

-- The method uses an ensemble of jointly trained binary classification models (Global 
and Local CRFs, global and local in terms of connectivity) that are locally trained at 
locations decided using combinatorial optimization techniques.



Steps Involved

The aim during this stage is identifying blobs and proposing a bounding contour for it.

We extract the dominant blobs using the following steps:

- Background Subtraction (Discussed earlier)
- Thresholding and Binarizing the image
- Gaussian Blur (To smooth image and reduce the noise)
- Closing and Dilation operations (Converting objects to blobs)
- Finding contours (Of computed blobs)
- Eliminating Noisy Contours (Remove Noisy Blobs)

All the above operations can be performed in real time (Around 33 fps).



Intermediate Results 

Thresholding and Binarizing the Image
Left Image shows the final result (i.e. Detected Contour)



Intermediate Results 

Original Image (Left), Result after Blurring (Right)



Intermediate Results

Closed Image (Left), Opened Image (Right)



Intermediate Results

Results (Boxes indicate Objects)



The previous section covered the Object Detection Stage. Note that we’ve not used the sequential 
information of the input i.e. it is a continuous video stream.
We name this section Object ‘Tracking’. The reason it is different from the previous section is because 
we ignored the inter frame relationships in Object Detection, while we’re using it to infer how the object 
moves.

We tried the following two methods for the same,
1. Contour similarities (Spatial Closeness)
2. Mean-Shift, CamShift based tracking (Very poor results, tuning required)
3. SIFT Based feature Matching 

     (Point matching variants tried: Least Squared Distance (Multiple), Hungarian based matching (Single))

Other possible models,
1. Region Proposal Networks
2. Region Based Segmentation and Detection

 (Not used due to data constraints, Pre trained Models available but defeat the purpose of the project)

Object Tracking



Extremely simple idea: Compute similarities between the contours formed in consecutive frames. The 
closest contours represent the same objects. In case of a completely new blob formed, we declare it as 
a new object (And start tracking it).

Related Issues: 
- Formed object can also be a group of objects.
- High Computation Time. Complexity involved is O(n**2), where n is the number of points in the 

contour.

Solutions/Hacks Used:
- Compute momentum (speed) of each box. Assumption involved is that the objects move with 

constant velocity (Which is pretty reasonable). Requires additional heuristics.
- Represent (Approximate) contours as rectangles (Bounding rectangles). O(1) computation.

Contour Similarity Based Tracking



SIFT Feature Based Tracking

Observe that the objects in consecutive frames are extremely similar. Thus, matching the 
images on the basis of SIFT vectors (feature points) gives ‘extremely’ good results (Almost an 
exact match).

Related Issues:
- Computation time increases (Computing SIFT vectors takes around 0.09 seconds), The 

matching part takes around 0.4 seconds (Which is the main bottleneck).
- In case of multiple objects, the interest point matching algorithm sometimes matches 

different objects (Can be rectified by changing the distance parameter)

Possible Solutions:
- Consider only the prominent SIFT vectors. This can reduce the time to allow processing 

around 10fps.
- The incorrect matches can be removed after ignoring the absurd matches (Based on the 

expected translation) (Explained Later)



SIFT interest points 
(Top)

Interest Point matches 
(Bottom)

Notice that the matching lines 
are parallel (Can be used to 
remove incorrect matches)

(Showing an exact match and 
translation of the object)



Notice that the correct 
matching lines are parallel 

This can be used to remove 
the incorrect matches. 
Since, the slope of the 
incorrect match is very 

different from the correct 
matches.

This is due to the fact that 
there is only linear (No 

rotational) translation of the 
object in small intervals.



Dataset Description

Data collected by crowd sourcing (Using the architecture made by UC Irvine (VATIC))

Consists of 7 classes:
   Car, Person, Motorcycle, Bicycle, Rickshaw, Auto-rickshaw, Number-Plate

Dataset Issues:
- Large number of Outliers (Incorrectly marked objects)
- Extremely similar Images (Discussed later)
- Poorly labelled objects (Occlusion, excessive translation, Overlap with others)
- Low number of images, Low diversity

We discuss a few results in the later sections. The train and test set used are described in 
the next slide. We also discuss a few points about the dataset.



Our Training set consists of around 80% of the total data.
Our Testing set contains the rest of the data (Ensuring that we choose completely 
different objects from the training set)

Failing to ensure the above mentioned condition led to absurdly high accuracies (Around 
96-98%). This is due to the earlier mentioned reason of extremely similar images, which 
makes the dataset equivalent to a small set multiplied by a constant.

We (try to) minimise incorrectly labelled data using a few heuristics during image 
extraction.
We also consider only those images of an object which are sufficiently different.

Data Pre-Processing



As mentioned earlier, the (cleaned) dataset contains a low number of images and 
diversity. In order to increase the data set size, we can perform the following,

- Flipping the image (Mirroring it)
- Taking a slightly reduced part of the image (Reference)
- Varying the intensities (Through Gamma correction or other methods)

Our motivation for taking a reduced part of the image comes from the fact that a model 
should be able to decide on an object based on a few distinctive parts of the object. 

We use the above mentioned methods to obtain a larger dataset (Around 16 times larger) 
and train a few models upon it. We observe an improvement in the results (Around 3-4%) 
which is discussed later and further supports the earlier claim.

Data Pre-Processing (Cont.)



Understanding the Dataset

Before discussing the approaches used for classification. We discuss a few features of the 
dataset in the following slides.

This is an extremely important part which is generally ignored. This section focuses on a 
few features which motivates further discussions (Or proposals).

We plot the distribution of the data points in 2 (and 3) dimensions using dimensionality 
reduction algorithms namely PCA and tSNE (Which has been shown to perform 
extremely well for visualizing high dimensional data).

Assuming the classes to be easily separable, we should expect the cluster centers to be 
visibly different. (Examples shown in later slides)



20-NewsGroups Dataset (Left), MNIST Dataset (Right)
Examples of Datasets visualized using tSNE ([Refer])



The given image is reduced using 
PCA (Used due to speed for a 

primary inference)

We can see that the only 
reasonably separated cluster is 
Cars. Note that ‘Rickshaw’ and 
‘Bicycle’ are extremely similar, 

which should be expected.

This motivates us to consider a 
two class problem i.e. ‘Car’ and 

‘Not Car’. Then use another 
classifier to make further 

predictions.



The given plot consists of classes 
after removing ‘Car’ and ‘Person’. 

We can see that again ‘Rickshaw’ 
and ‘Bicycle’ are extremely similar. 
Which also motivates to merge the 

two classes together into one.

We can also see that ‘Auto-
Rickshaw’ and ‘Rickshaw+Bicycle’ 

are pretty different (Far apart), thus 
can be discriminated nicely.



Two Class Plots (Rickshaw, Auto-Rickshaw) (Left)
 Two Class Plots (Car, Not Car) (Right)

Results supporting this are shown in the results section



tSNE Plots (All classes except Person) (Left)
 Two Class Plots (Car, Not Car) (Right)

The plots obtained are quite complicated (Even though they do have some inherent structure)



Haar Cascade Classification
The very first classifier we tried using was HAAR cascade classifier for vehicle 
classification. We tried using an external dataset. (From Stanford)  
http://ai.stanford.edu/~jkrause/cars/car_dataset.html

The results were very poor. So later we tried using the same classifier with data 
extracted from the video. But we could get only limited number of training 
samples for HAAR cascade. Hence the classifier could not be properly trained. 
So again the results were not satisfactory.

This made us move to other common classifiers like LinearSVC, SVC, Random 
Forest and Adaboost. 

http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://ai.stanford.edu/~jkrause/cars/car_dataset.html


Analysis of various features

We experimented with two types of 
features. We used the following 
features:-

1. HOG
2. Pixel Value
3. PCA on Pixels

As expected, HoG features 
outperformed raw pixel features by 
a large margin

-- Figure created using a linear SVM 
classifier



Analysis of various features

Input image (Left) and Histogram of Oriented Gradients (right)



Analysis of various parameters (SVC)

Parameter Tuning using Grid Search. 
We have used the following grids for 
SVC :- 

1. {'C': [0.1, 1, 10, 100, 1000], 'kernel': ['rbf']} 
(Type-1)

2. {'C': [0.1, 1, 10, 100, 1000], 'kernel': 
['linear']} (Type-2)

3. {'C': [10,20,30,40,50,60,70,80,90,100], 
'kernel': ['rbf']} (Type-3)

4. param_grid = {'C': 
[10,20,30,40,50,60,70,80,90,100], 
'kernel': ['linear']} (Type-4)



Analysis of various classifiers

For Multiclass Classification we 
have tried the following classifiers: 

1. LinearSVC
2. SVC
3. Random Forest
4. Adaboost 



Analysis of Binary Classification

We also tried binary classification for 
cars using the following approaches:
-

1. LinearSVC with sq. hinge loss.
2. LinearSVC with hinge loss.
3. SVC with Grid Searched 

parameters
4. Random Forest.

(Mainly because our dataset is 
skewed in favour of Non-Cars as can 
be seen in the recall value which is 
0.91)



Analysis of Binary Classification

We also tried binary classification for 
motorcycles using the following 
approaches:-

1. LinearSVC with sq. hinge loss.
2. LinearSVC with hinge loss.
3. SVC with Grid Search [Type 1 

parameters]
4. SVC with Grid Search [Type 2 

parameters]



Performance of LinearSVC
LinearSVC gave the best results with hinge 
loss and HoG features for vehicle 
classification.  

The Confusion matrix for the same is:

  Class Precision Recall F1-score Support

Car 0.8444 0.9559 0.8967 227

Person 0.6268 0.7507 0.6832 349

Motorcycle 0.7823 0.8784 0.8276 1522

Bicycle 0.8058 0.7492 0.7765 1224

Autorickshaw 0.8615 0.3836 0.5308 146

Rickshaw 0.9074 0.4317 0.5851 227



Convolutional Neural Network
We trained two ConvNet architectures on the Augmented Dataset (~11000 
training samples, ~2000 test samples)

Architecture 1:
Image[100x100] -> Conv1 [8 filters, 3x3] -> ReLU -> MaxPool(2x2) -> Flatten -> Dense[64] (tanh activation) -> Softmax[6]

Architecture 2:
Image[100x100] -> Conv1 [8 filters, 3x3] -> ReLU -> MaxPool(2x2) -> Conv2 [8 filters. 3x3] -> ReLU -> MaxPool(2x2) -> Flatten -> 
Dense[64] (tanh activation) -> Softmax[6]

-- Both the architectures were trained with aggressive Dropout rates to prevent Overfitting



Effect of Data Augmentation
On Augmented Data:

  precision    recall f1-score   support

Car     0.9831    0.9943    0.9887       176
Person     0.6243    0.4355    0.5131       248
Two-     0.9366    0.9686   0.9524      2136
Wheeler

avg / total   0.9096    0.9187    0.9123      2560



On Un-Augmented Data:

         
precision    recall  f1-score   support

Car     1.0000    0.7216    0.8383       176
Person     0.4579    0.5484    0.4991       248
Two- 0.9270    0.9270    0.9270      2136
Wheeler     

avg / total   0.8865    0.8762    0.8794      2560

Both tested on same Test Set!

Effect of Data Augmentation



ConvNet Performance
On 5 Classes:

   

                 precision  recall  f1-score   support

Car     0.9358    0.9943    0.9642       176
Person       0.5425    0.4637    0.5000       248
Rickshaw     0.5974    0.2500    0.3525       184
Two- Wheeler    0.8704    0.9494    0.9082      2136
Autorickshaw  0.7586    0.3667    0.4944       120

avg / total     0.8238    0.8408    0.8232      2864



ConvNet Performance
On 6 Classes:

  precision    recall  f1-score   support

Car      0.9724    1.0000    0.9860       176
Person      0.6055    0.5323    0.5665       248
Rickshaw      0.4875    0.2120    0.2955       184  
Motorcycle      0.8102    0.9552    0.8767      1184
Autorickshaw      0.9184    0.3750    0.5325       120
Bicycle      0.8606    0.8498    0.8552       952

 avg / total      0.8030    0.8142    0.7977      2864



License Plate Detection

After the object classification stage, we come to License plate Recognition part. The first 
stage in this involves localizing or computing regions where the license plate may lie. 

The final part is recognizing the text on the license plate. This involves, segmenting the 
characters and then using OCR to recognize the text on the license plate. We also require 
lots of data (text information) to train such an OCR model, thus we have used pre-trained 
models on text from US License plates. Thus, even if the regions proposed are 
reasonable, the OCR part is not able to recognize the characters.

There are many prevalent methods for localising license plates. We use image processing 
operations (Mainly gradients and morphological operations) to narrow down the regions.



As used in the object detection stage. We use a background model to remove the 
irrelevant information.

The first stage involves computing (horizontal) gradients. The motivation being that the 
license plate region will contain a lot of gradients (Due to the text present in it).

We also experimented with vertical and total (Horizontal and vertical) gradients. The 
improvements were not significant.

This is followed by morphological operations as discussed earlier (In object detection). 
The following slide contains the intermediate results.

License Plate Localization
(Using Image Processing Operations)



License Plate Recognition

We used the pretrained OpenALPR model (on US License Plates) for the task and tried out 
their detection pipeline on our proposed number plate regions.

OpenALPR Pipeline --

Char Analysis - Find connected character-sized blobs in binarized image
Deskew - Affine transformation to change perspective to straight-on view
Character Segmentation - Individual character segmentation and cleaning
OCR - Analyzing each character given by the Character Segmenter and predicting a 
character
Post Processing - Creating a list of plate possibilities based on OCR confidences



Recognizing License Plate Text (Right)



Possible Improvements

-- Get more relevant data for digit-wise OCR

-- Use a Convolutional Neural Network for the OCR task

-- Use Semantic Image Segmentation (eg. DeepLab Segmentation Engine). Use Semantic 
Segmentation to get object proposals

-- The tracking can be done using SIFT correspondence, Mean Shift, learning a small 
CRNN (Convolutional Recurrent Neural Network (Shi et al., CoRR 2015)) to get corner 
change values given an images and their corresponding corner positions

-- Using faster-rcnn (Ross Girschick et al.) (Training requires a huge amount of data)

-- Using a Scalable Vocabulary Tree of SIFT Features for fast and efficient class detection 
(Nister et al.)



Tools Used

1. Languages Used: Python
2. Libraries Used: 

a. Scikit-Learn
b. Tesseract
c. OpenALPR
d. Keras
e. Theano

3. Pre-Trained Models Tested: 
a. OpenALPR
b. LPO
c. OverFeat


