
Finding the Convex Hull of points in a plane

We tackle the problem using a divide and conquer approach. The dividing step,
as usual involves breaking the problem into two sub problems. The conquer
part (trickier) involves making a convex hull using two smaller convex hulls.
The whole procedure and implementation is explained in the folowing sections.

Algorithm:

First, all the points are sorted in order of x coordinate.

Then, the division involves dividing the points in two halves, one half containing
points  whose  x  coordinate  is  greater  than  the  median  and  the  other  half
contains the other points. 

Now the function is called recursively and we finally get two convex hulls, one
for the first set of points, and the other for the other set.

Notice that we have two convex polygons which do not contain nor intersect
each other. Also appreciate that finding the convex hull of all the n points is
equivalent to finding the convex hull of these two polygons.

Consider  the figure  given below,  it  contains  the two convex hulls  from the
recursive calls,

Now, we take the right most vertex of the hull A (let this be E) and the left most
vertex of hull B (let this be F) (well, any two reasonable vertices would work). 

In  a  manner  similar  to  merge  sort,  if  the  angle  between  EF  and  EES   (in
clockwise direction) is less than 180 degrees we replace E by Es.  And if the
angle between FFp and FE  (in clockwise direction) is less than 180 degrees we
replace F by Fs. See figure for how it looks.

We end this when no replcement is needed. This will give us the lower side (a
rough term).

For the upper side, the algorithm is roughly the same. But now we consider, EpE
and EF, and FE and Ffs. Again we terminate when no replacement is required.
See the figure for a test run for the algorithm,



Implementation:

The  points  are  stored  in  an  array,
sorted according to x-coordinate. 

The convex hulls are stored as circular
linked  lists,  the  points  are  stored  in
clockwise  order  which  can  be  done
easily using the recursive structure of
our function calls.

So  when  we  join  two  polygons,  the
circular  linked  lists  can  also  be
updated.

Finally  we  get  a  circular  linked  list
containing our convex hull.

Space Analysis:

The total space taken is O(n). But the space in the recursive stacks kicks it up
to O(n*logn).

Time Analysis:

Initially we sort the array in O(n*logn).

Then  during  the  function  call,  the  recurrence  relation  for  the  number  of
operations is,
T(n) = O(n) + 2*T(n/2)
Which means, T(n) = O(n*logn)

Thus the time taken is O(n*logn).



Point in Convex Polygon

Introduction:

This  is  a  fundamental  problem  used  in  future  algorithms  and  is  therefore
discussed here.

Data Structures used:

Binary Search Trees:

We store the convex polygon as a binary search tree, actually, two BST's (the
search takes place on the x coordinate). The details are as follows,

Consider  the  convex  hull,  take  the  right
most and left  most point.  Notice that this
divides the hull into two halves. Let one be
the Upper hull (U Hull), then the other one
is the lower hull (L Hull). 

Now make a BST using the points of U hull,
and another BST using points of L hull.
See the figure for a clearer view.

Algorithm:

Given a point (x0,y0), we need to find if it lies in the polygon or not. 

We use the following theorum:
Shoot  a ray in any direction.  If  it  intersects the polygon an odd number of
times, then it lies inside it. Otherwise it lies outside it.

So we shoot a ray x=x0  , upwards. Now we need to know at how many points
does it intersect. But due to the construction of U hull and L hull, the ray will
meet each of them at most once.

We use binary search on the BST's  (U hull  and L  hull)  to  find the possible
intersection with the ray. We search for x0  in U hull. When the search finishes,
we will have an xi and xi+1, where,
 xi <= x0 <=  xi+1

Notice that the line segment joining these two points is the only place where
the ray can possibly intersect. So we just need to check if it intersects or not.
Similarly for L hull.

Thus we get a count of how many times
the ray intersects the polygon,  and thus
we know whether it lies inside or not.

See the figure for a clearer view.



Time complexity analysis:

This algorithm involves only a couple of binary searches, so it takes O(logn) 
time.



Efficiently maintaining Convex Hull under addition of 
points

Introduction:

This was an extra question solved by us during the project. It made us think a
lot, and also helped us to think about solutions to the future problems. Looking
at  the  solution,  we  also  realised  the  importance  of  data  structures  i.e.
representing data in some specific format can make the problem quite easier.
Since, it is an extra problem, we will just discuss the basics of the algorithm
without going into too much detail.

Data Structures used:

Binary Search Trees:

We store  the  convex  hull  as  a  binary  search  tree,  actually,  two BST's  (the
search takes place on the x coordinate). The details are as follows,

Consider  the  convex  hull,  take  the
right most and left most point. Notice
that this divides the hull  into  two
halves. Let one be the Upper hull (U
Hull), then the other one is the lower
hull (L Hull). 
Now make a BST using the points of U
hull, and another BST using points of
L hull.
See the figure for a clearer view.

Linked Lists:

We store the points in U hull and L hull in two linked lists. This is mainly done
for efficient Successor and Predecessor operations. The linked list stores points
in a clockwise manner.

See the figure on how the linked lists are stored,

Algorithm:

The convex hull should support efficient addition. Consider the time when a
point is going to be added. We have a convex hull of the some points, now we



have to add a new point and change our convex hull accordingly.

First, we check if the new point is inside the convex hull or not. This can be
done efficiently using the algorithm mentioned earlier.

If it's inside, then there is no change. But otherwise, the convex hull must be
modified. Lets handle this case.

Consider any point and any convex polygon, the figure shows their possible
orientations.

Let  us  define  line-1  to  be  the
upper line (U line) and line-2 as
the lower line (L line).

While the angle between FE and
FFs is less  than  180  degrees,
replace F by Fs  (Algorithm A). 
This gives us U line. A similar
algorithm will give us L line, but
we  consider  FFp and  FE  in  it
(Algorithm B).

The  figure  below  describes  the
algorithm to  find  the  point  of
contact in the first case. 

Notice that when you run algorithm A on a
hull which does not have a point of contact
of the U line lying on it,  it  will  give us  an
invalid point (or NULL if the return value  is
modified). Similarly for Algorithm B. 
Thus,  instead  of  doing  some  nasty  case
work, we can run both Algorithm A and B on
both U hull and L hull, and  consider  only
the valid points returned by the functions. 

It's not over yet, there is still a lot which needs to be done. Now that we have
points C and D (the points of contact), we need to update our hull. 

There's a lot of case work here, but the rough idea is as follows,

If C lies on U hull, then we split U hull through C, then discard the greater tree
or lesser tree according to what is needed. Similarly for D.
If both C and D lie on U hull, then we once split through C, and once through D.
Then take the required parts accordingly.
Finally we add the new point in either U hull or L hull (whichever is suitable).

The BST's are updated, now updating the linked list is quite trivial, since we just
have to play around with the next pointer of the nodes.



Time complexity analysis:

Finding whether the point lies inside or not takes O(logn) time.

Then, finding C and D (points of contact) also takes O(logn) time, since the
method is similar to binary search.

Splitting a BST also takes O(logn) time. Finally adding the new point in a BST
also takes O(logn) time.

Thus the overall complexity is O(logn).



Line Polygon Intersection

Introduction:

This is another fundamental problem used in future algorithms and is therefore
discussed here.

Data Structures used:

Binary Search Trees:

As done earlier, we store the convex polygon as a binary search tree, actually,
two BST's  (the search takes place on the x coordinate).  The details  are as
follows,
Consider the convex hull, take the right most and left most point. Notice that
this divides the hull into two halves. Let one be the Upper hull (U Hull), then the
other one is the lower hull (L Hull). 
Now make a BST using the points of U hull, and another BST using points of L
hull.

Algorithm:

Consider any hull (U hull or L hull) and any line. There can be two possiblities,
which are shown in the figure,

In  the  first  case,  the  line
intersects  the hull  two times,
while in the other it intersects
it one time.

So it can broadly be classified
into,  odd  or  even  number  of
intersections.

The theorum used in this algorithm is,
When two points (x1,y1) and (x2,y2) are substituted in the equation of the line
i.e. y = f(x), then the sign of (y – f(x)) is same if they lie on the same side of the
line. 

First, lets consider the case when there is only one intersection. 

Notice that the extremes of the hull are on opposite sides of the line i.e. if I
substitute them in the equation of the line, they will give opposite signs (since
they are on opposite sides). So, we do a binary search in which we move away
from the  extreme which  has  the  same sign.  The  figure  explains  the  whole
procedure,



Now, lets handle the case when there 
are two intersections.  Here the two  
extremes will give the same sign. 

We try to find a point which is on the 
other side of the line (different side  
from the extremes).  When we have  
this point, lets call it X, notice that we 
will have exactly one intersection to  
the left side of X, and one to the right

of X. So if we split our hull (BST) through X, then we get two trees with exactly
one intersection in them. And this is equivalent to the previous case.

So, to find this point
X, we try to find the
point  which  is  at  an
extreme  distance
from our line. 

See the figure for any
clarifications,

Again  we  use  a  binary  search
approach  for  this,  remember
that the hull is convex. Let our
current point be A, we consider
the distances of A and As  from
the line.  Then we either  go to
the  left  subtree  or  the  right
subtree  depending  on  which
side the extremes lie. The figure
will  give  you  a  better  view  of
the algorithm,

Thus, with this we can find X and follow the steps described in the scond case. 
Note that we don't really need to split the hull, we can modify the binary search
while ensuring that we never cross the split path. Or a more simple solution is 
to use an array.

Time Complexity Analysis:

The algorithm mainly uses approaches similar to binary search, thus it take 
O(logn) time.



Half plane query - Number of points on a given side of a 
line

Introduction:

This is the first major problem which was solved by us and required quite a lot
of  thinking.  The data structure used is  quite unobvious,  but  it  has it's  own
advantages and disadvantages. We will be discussing the data structure used
and the related algorithms in this section.

Data Structures used:

Onion of Convex Hulls:

Onion, it's a wonderful name as it aptly describes what this data structure looks
like. An onion is infact a layer by layer joint of many convex hulls. The details
for construction are as follows:

First find the convex hull for our set (the n points). 
Now remove all the points which are present in the convex hull from the set. 
Again find the convex hull for this new set. 
Keep removing and repeating until there is no point left.

After this, we will have some convex hulls C1 , C2, .... , Ck  such that,
Ci contains all Cj (j < i)

These Ci's form our onion, with Ck being the outermost layer of the onion and C1

being the innermost one.

Notice  that  any  set  of  n
points  will  have  a  unique
onion  (Evident  from  the
uniqueness  of  a  convex
hull).  The  figure  given
below shows an onion,

The  convex  hulls  in  the
onion  are  stored  as
described previously using,

Binary Search Trees:

We store  the  convex  hull  as  a  binary  search  tree,  actually,  two BST's  (the
search takes place on the x coordinate).



Linked Lists:

We store the points in U hull and L hull in two linked lists. This is mainly done
for efficient Successor and Predecessor operations. The linked list stores points
in a clockwise manner.

Algorithm:

The question boils down to finding the number of points on a given side of a
line and a convex polygon. 

The main idea is as follows,
The BST stores some other data also i.e. it's an augmented data structure. It
stores the rank of the node in the BST. Now if the points of intersection of the
line are A and B. Then the number of points on that side of the line is |Rank(A) –
Rank(B)| or something depending on their ranks.

Now formally,  if  A and B are  the points  of  intersection.  Then we have the
following cases,

A lies on U hull and B lies on L
hull  (and  the  complementary
case)
Both A and B lie on the same
hull (let it be U hull). 

In the first case, the number of
points  on  a  given  side  is
Rank(A) + Rank(B).
And in the second case, it's |
Rank(A) – Rank(B)|.

See  the  figure  for  a  rough
explanation,

So, we first find A and B (the points of intersection), it can be done using the
method  discussed  in  the  earlier  sections.  Then  use  the  method  described
above.

To print all the points we just have to go from A to B in a sequential order,
which can be done using the linked lists we had made.

Space Complexity Analysis:

First, let's consider the space required for storing a hull (in terms of a BST and a
linked list). The BST takes O(k) space, where k is the number of points in the
hull. The linked list also takes O(k) space. Thus, storing a hull takes O(k) space.

Now, in reality we have a whole bunch of hulls, i.e. an onion. Let the number of
points in the first layer (hull) be k1, in the second one be k2 and so on. So the
total space taken is,



O(k1) + O(k2) + ... +O(kc) , where c is the number of layers.
Which is, O(n) 
i.e. it's linear in the number of points. So the onion is actually a very space
efficient data structure.

Thus the space required is O(n).

Time Complexity Analysis:

We break this into two parts, the first one is Pre processing time, and the other
one is the Query time.

First,  the pre-processing time. During the pre processing step,  we make our
onion. Let's analyse the time taken for that.

In the first iteration, we find the convex hull for n points. This takes O(n*logn)
time. Then we remove the points which have made it into the convex hull. This
takes O(k) or O(n) time (depending on the implementation),  where k is the
number of points in the convex hull.
In the next iteration, we find the convex hull of the remaining (n-k) points. Thus
takes O((n-k)*log(n-k)) time. And the pattern continues.

So the overall time taken is,
O(n*logn) + O((n-k1)*log(n-k1)) + .... + O(1)
Now, if we want a loose bound, then the time complexity will be,
O(n2 * log n)

Thus making the onion i.e. the pre processing step takes O(n2 * log n) time.

Now for the query step, there are two queries : one which involves printing all
the points on any side, and the other which just asks for the number.

First, consider the query in which we print everything.
We open the onion layer by layer, in each step we consider the present layer
i.e. hull and find the number of points lying on a given side. For this, we use the
previously discussed line polygon intersection algorithm. It takes O(log k) time,
where k is the number of points in the polygon. Then we move sequentially
from point A to point B (intersection points), and print all the points on the way.
This takes O(l) time, where l is the number of points lying on the given side.
This takes, O(log k) + O(l) time.
Then we repeat this for each hull, until we reach a hull with no intersection.

Thus the total time taken is,
O(log k1) + O(l1) + O(log k2) + O(l2) + .... +O(log kc) + O(lc)

Now, this is  a highly varying sum, and is highgly dependent on the line we
choose.  So,  the best  we can do is  find a worst  case bound for  this,  which
happens when we encounter only one point ont he given side in every hull. So
we would have to traverse 'm' hulls before terminating (where m is the number
of points on a given side). So the worst case time becomes,
O(log k1) + O(l1) + O(log k2) + O(l2) + .... +O(log km) + O(lm)
which is, O(m*log n) + O(m) i.e. O(m*log n)



Thus the query takes O(m*log n).

The analysis for the number of points query is also similar, it performs well on
average.  But  the  worst  case is  similar  to  the above i.e.  O(min(m,k)*log  n),
where k is the number of layers in the onion and m is as defined above.

Thus the time taken by both type of queries is O(min(m,k)*log n) per query

 
Experimental Results:

Number of layers in the onion:

We noticed that the number of hulls is almost constant for a given 'n'. So the
plotted graph looks like,

The above graphs are lnum vs n, and lnum vs sqrt(n) respectively. So, after
another approximation, we felt that sqrt(n)*log(log(n)) is quite close to  lnum.
The graph is,

 



Preprocessing Time:

The graph of Preprocessing time vs n*n looks like,

So, due to the concave nature of the graph we can say that it is bounded above
by n*n.

Query Time:

For point reporting the graph of time vs sqrt(n)*(log(n)*log(n)) looks like,

So we can say that the time is proportional to the ((number of points) * log(n)).



For point number reporting, the graph of time vs sqrt(n)*log(n) looks like,

 

Fractional Cascading:

Fractional cascading is a technique to make binary search in k different lists of
similar data very efficient.

If the total  number of elements in all the list in n, then trivial binary search
leads to O(k*log(n/k)) solution.

By using fractional cascading and merging the lists, the task can be achieved in
O(log(n) + k) time.

This technique can also be used in our half plane problem using convex hull
layers. The time taken to search for the points of intersection can be sped up
and the resulting time taken per query will O(log(n) + k).

The space complexity will be O(n*log(n)).

Thus, the performance of our solution can be improved to O(log(n) + k).



Rectangular query : Number of points in a rectangle 

Introduction:

This is an extra problem solved by us during the pursuit of an efficient solution for the
half plane problem. So we will just discuss some details of our solution.

Data Structures used:

The main data structure used is similar to a segment tree. Consider all the n points,
they  will  be  of  the  form (x,y).  So  we  first  sort  all  the  points  according  to  the  y
coordinate, let's say this array is A.

Now,  imagine that  we run merge sort  on A,  to  sort  this  array according to the x
coordinate. Then, in the first all all pairs of elements will be sorted, in the next call, all
set of four elements would be sorted and so on. So we store all these miniature sorted
arrays in our data structure.

So,  this  data  structure  can  give  us  the  sorted  sub-array  (i,j).  Since  (i,j)  can  be
decomposed into intervals which are a power of 2, and since our data structures stores
the sorted subarray for that case, thus we can find it quickly.

Algorithm:

Let's say we need to find the numbe rof points in the rectangle defined by (x1,y1) and
(x2,y2). So, this can be broken into a sub problem in which we need to find the number
of points in the rectangle defined by (0,0) and (x,y).

To do this, we first search for 'y' in array A, using binary search. Now, we have a sub
array of A in which all points have y coordinate less than y. Now we want to find the
number of points which also have x coordinate less than x.  For this we use our data
structure, using binary search for x in all the decomposed sub arrays.

Thus, in the end we have the number of points in the rectangle.

Space Complexity Analysis:

Let's find the space taken by our data structure. Notice there will be O(log n) levels, in
which we store n elements at each level. So the space complexity is O(n*log n).

Time Complexity Analysis:

Let's  consider  the  pre  processing time.  It  takes  the same time as  merge  sort  i.e.
O(n*log n).

Now for the query step, we first use a binary search for y in array A. It takes O(log n).
Next we decompse our sub array into intervals (which are powers of 2). There can be
maximum O(log n) of them. We perform binary seach in each of them. So the time
taken at each of it is, O(logn). Thus the total time is O((log n)^2).

The overall time complexity is O((log n)^2).



Ham Sandwich Theorum

Ham Sandwich theorum is actually a general for 'n' dimensions. But, we will be
using only the two dimension version, which is,

For a finite set of points in the plane, each colored "red" or "blue", there is a
line that simultaneously bisects the red points and bisects the blue points, that
is, the number of red points on either side of the line is equal and the number
of blue points on either side of the line is equal.

It is depicted in the following figure,

The line which divides it in equal parts is called a Ham Sandwich cut. We use
the HS (Ham Sandwich) theorum to prove the existence of two lines, which
divide the plane into four quarters, each of which contains the same amount of
points.

The approach is further explained in the following sections.



Half Plane query : Using Ham sandwich cuts

Introduction:

This is an alternative solution to the half plane problem discussed earlier. This
solution involves Ham Sandwich cuts which we've just discussed. This is a sub
prolem used to solve the main problem of our project. We will be discussing the
data structure used and the related algorithms in this section.

Data Structures used:

Originally we have n points. From the discussion in the last section, we know
that there are two lines which divide the plane into four quadrants, such that all
the quadrants contain the same number of points.

Now  we  consider  each  of  the
quadrants, again there exist two lines
which  divide  this  into  four  equal
quadrants.  We  keep  repeating  this
procedure till there is only one point. 

The final data structure looks like the
following,

So, the data structure we use contains
sets  of  points  which  belong  to  a
quadrant.

Algorithm:

Lets say we are given any line, L. Consider the two lines which divide the plane
into four equal quadrants, i.e. X1 and X2. We now have four quadrants, and a
line L.

So,  we  claim  that  L
intersects  at  most  3
quadrants. This can be seen
in the figure,

So the problem boils down
to  finding  the  number  of
points  in  these  smaller
problems.
Thus,  at  each  iteration  we
can  discard  atleast  one-
fourth of the points.



Space Complexity Analysis:

We are stroring sets of points in our data structure. 
The first level of points contains n points. The next level contains 4 smaller sub-
problems, and each contains (n/4) points. Thus, it also contains n points.
The next level again contains a total of n points.
So, each level contains n points, and there are log n such levels. Thus the total 
space required is,
O(n*log n).

The space complexity is O(n*log n).

Time Complexity Analysis:

The recurrence relation for the number of operations is,
T(n) = O(1) + 3*T(n/4)
Which means, T(n) = O(3^log4n) = O(3(log4(n)))  

This can also be written as,
T(n) = O( nlog4(3) ) = O( n0.792 )  

Thus the time taken is O( nlog4(3) ) = O( n0.792 ) . 



Simplex problem : First Approach

Introduction:

This was the first solution we were able to think of to answer a simplex query
efficiently. We will quickly discuss the algorithms and data structures used. 

Data Structures used:

Since we have n points, at best we can get n distinct x and y coordinates.
First we map all the x coordinates to the range [1,n] and do the same for the y
coordinates.

Now consider a grid of size n x
n.  We  merge  the  interval
[1,sqrt(n)], [sqrt(n)+1, 2*sqrt(n)]
and so on. Now we have a grid
of size sqrt(n) x sqrt(n). 
Here in each box, we store the
number of points lying inside it.

The  figure  describes  the  data
structure.

Algorithm:

Consider a triangle, it consists of three line segments. If we put this triangle
over our grid. Then the maximum number of boxes it can intersect is O(sqrt(n)).

The  number  of  points  in  the  boxes  which  are  lying  completely  inside  the
triangle can be calculated usng the method in the figure,



Now, there will  be atmost  three boxes which will  contain the vertex of  the
triangle. The number of valid points can be simply calculated  by considering all
the points in these boxes.

Time Complexity Analysis:

Notice, that the maximum number of points in a box can be sqrt(n).
First, we find the boxes which intersect the triangle in O(1). Next we calculate
the number of points for the boxes completely inside the triangle, this takes
O(sqrt(n)).

Now to calculate the number of points in the boxes which are intersected by
the line, we consider this as a half plane query. Which takes O( n0.792  ) for n
points. But each box contains, sqrt(n) points in the worst case. So the time
taken for this is O( n0.5 * n(0.792/2) ) which is O( n0.896 ) .

Finally, the valid points in the boxes in which the vertex lie, can be found out by
just checking all the points in them. This takes O(sqrt(n)).

Thus the overall time complexity is  O( n0.896 ) .



Simplex query : The Second Approach

Introduction:

This is an improved solution to solve the simplex problem. This is the main 
problem in the project, and took a considerable amount of effort. This solution 
involves an approach which is similar to the one used to solve half plane query. 
We will be discussing the data structure used and the related algorithms in this 
section.

Data Structures used:

Originally we have n points. From the discussion in the last section, we know 
that there are two lines which divide the plane into four quadrants, such that all
the quadrants contain the same number of points.

Now we consider each of the quadrants, again there exist two lines which 
divide this into four equal quadrants. We keep repeating this procedure till 
there is only one point. 

The final data structure looks similar to the one discussed in the half plane 
problem.

So, the data structure we use contains sets of points which belong to a 
quadrant.

Algorithm:

Lets  say  we  are  given  any
triangle, then it will be made
up  of  three  line  segments.
Consider the two lines which
divide  the  plane  into  four
equal  quadrants,  i.e.  X1 and
X2.  We  now  have  four
quadrants, and a line L.

Now,  to  find the  number  of
points inside the traingle, we
try to find out the number of
points  outside  the  triangle.
The way we decompose the
problem can be seen in the
figure.
  

Three  of  the  sub-problems
are simple half plane queries.
We  will  try  to  develop  an
algorithm to find a solution to
the V shaped problem.



We claim that the V shaped problem can be decomposed into three or four half 
plane queries and a smaller V shaped problem.

It can be done as shown in the figure,

Space Complexity Analysis:

The space complexity is O(n*log n). It was discussed while analysing the half 
plane query.

Time Complexity Analysis:

The recurrence relation for the number of operations in a V shaped query is,

T(n) = O( n0.792  ) + T(n/4)

Which means, T(n) = O( n0.792  )  

So, to solve the simplex query, we make three half plane queries and three V 
shaped queries. This takes a total time of  O( n0.792  ).

Thus the time taken is O( nlog4(3) ) = O( n0.792 ) . 


