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Abstract—Real-world datasets consist of data representations
(views) from different sources which often provide information
complementary to each other. Multi-view learning algorithms
aim at exploiting the complementary information present in
different views for clustering and classification tasks. Several
multi-view clustering methods that aim at partitioning objects
into clusters based on multiple representations of the object have
been proposed. Almost all of the proposed methods assume that
each example appears in all views or at least there is one view
containing all examples. In real-world settings this assumption
might be too restrictive. Recent work on Partial View Clustering
addresses this limitation by proposing a Non-negative Matrix
Factorization based approach called PVC. Our work extends the
PVC work in two directions. First, the current PVC algorithm
is designed specifically for two-view datasets. We extend this
algorithm for the k partial-view scenario. Second, we extend our
k partial-view algorithm to include view specific graph laplacian
regularization. This enables the proposed algorithm to exploit
the intrinsic geometry of the data distribution in each view.
The proposed method, which is referred to as GPMVC (Graph
Regularized Partial Multi-View Clustering), is compared against
7 baseline methods (including PVC) on 5 publicly available text
and image datasets. In all settings the proposed GPMVC method
outperforms all baselines. For the purpose of reproducibility, we
provide access to our code.

I. INTRODUCTION

Many real world datasets naturally comprise of different
(heterogenous) representations or views. For instance, image
dataset can be represented using a collection of heterogenous
features (or views) e.g. colour descriptor, local binary patterns,
local shape descriptor etc. Similarly, a corpus of scientific
documents can be represented using words in the documents,
document metadata (e.g. title, author and journal) and the co-
citation network graph. Observing that these multiple represen-
tations or views often provide compatible and complementary
information, multi-view learning methods have been proposed
that integrate the information present in the different views for
tasks such as clustering and classification.

Considering its practical applicability, the problem of un-
supervised learning from multiple-views of unlabeled data
(referred to as multi-view clustering) has attracted a lot of
attention in the past. The goal of multi-view clustering is to
partition objects into clusters based on multiple representations
of the object. A number of approaches which are either
spectral [6], [7] or subspace [5], [3] based have been proposed.
There has also been efforts to enable these techniques for chal-
lenges which real-world data poses. Some prominent examples

include the work on scale-up [9], handling corrupted/noisy
views [12], missing and unmapped views [13] etc. Recently
authors investigated the problem of partial-views [8]. Most
previous studies on multi-view clustering either assumed that
all examples have full information in all views, or that there
exists at least one view which contains all the examples. The
author’s [8] investigate the case where every view suffers
from some missing information, which results in what the
author’s refer to as partial examples. To illustrate this point,
consider bi-lingual documents (where the two languages can
be seen as two views of a document) - in the partial view
setup many documents might have only view available i.e
for some documents only a single language translation of the
document is available. The proposed Partial View Clustering
(PVC) algorithm was shown to be effective in scenarios with
partial examples.

Our work extends the partial-view work in two concrete
ways. First, the current PVC algorithm is designed specifically
for two-view datasets. We extend this algorithm for the k
partial-view scenario. Second, we extend our k partial-view al-
gorithm to include view-specific graph laplacian regularization.
This enables the proposed algorithm to exploit the intrinsic
geometry of the data distribution in each view. We compare our
method against 7 state-of-art multi-view clustering methods
on both text and image datasets. The baseline methods and
datasets used in this work are more exhaustive than what
was used in the PVC work. Our experiments show that
the proposed GPMVC method outperforms PVC and other
competitive baseline methods on all the 5 datasets. We also
provide insights into how our algorithm performs when there
is a skew in the distribution of partial examples across views1

something not discussed in earlier work.
Paper Organization: Prior work is covered in Section II.

Our proposed method is described in Section III and Sec-
tion IV. Experiments and results are discussed in Section V.
Conclusion and future work is presented in Section VI.

II. PRIOR AND RELATED WORK

For multi-view clustering a number of approaches which
are either spectral or subspace based have been proposed. We
briefly review a few of these approaches.

1For comparison with PVC only two-view datasets are considered for the
skew experiments



Multi-view Spectral Clustering algorithms make use of
some similarity measure between objects. For instance, [2]
create a bipartite graph based on the nodes co-occurring in
both views and find a cut that crosses fewest lines. This is
further generalized in [15] where the notion of normalized cut
is extended to multiple views. Another interesting work in this
space is of integrating multiple information by co-regularizing
the clustering hypotheses [7].

Multi-view Subspace Clustering algorithms assume that
the multiple views are generated from one common subspace.
The subspace approaches aim at learning a latent intrinsic
subspace where the representations of instances in each view
are close for similar examples. Several approaches have been
proposed that factorize each view as a linear combination
of shared latent representation – the most popular being
Non-negative Matrix Factorization (NMF) based multi-view
clustering algorithms [4], etc.

PVC : Multi-view clustering with partial examples. As
discussed earlier this algorithm [8] addresses the scenario
where every view suffers from some missing information. This
results in many partial examples i.e. some data instance might
not be represented in all the views (Note that PVC only works
for two view datasets). The PVC approach uses the NMF
framework to establish a latent subspace where (i) instances
corresponding to the same example in different views are close
to each other and (ii) similar instances (belonging to different
examples) in the same view are well grouped.

III. PROPOSED APPROACH: GPMVC
In this section, we present our proposed method (re-

ferred to as GPMVC : Graph regularized Partial Multi-View
Clustering) for multi-view clustering in presence of partial
examples. In Section III-A we present notations that we use
throughout the paper. The formulation for GPMVC method is
introduced in Section III-B. Section IV provides details of the
optimization procedure.

A. Notations
We use S = {(X,Y)} to denote the dataset. N denotes the
total number of instances, Mi is the number of attributes
(features) in view i, Ni is the number of instances in view
i, k denotes the number of desired latent dimensions and v
the number of views.
X = {X1, X2, . . . , Xv} where Xi ∈ RMi×Ni

+ denotes the
non-negative data matrix (for view i). Columns in the matrix
represent data points and rows represent attributes.
Y = {y1, y2, . . . , yv} where yij is the cluster label of the jth

data instance in the ith view.
Ui,Vi: For each view NMF factorizes the data matrix Xi into
a basis (Ui) and coefficient (Vi) matrix s.t. Xi = UiV

T
i , where

Ui ∈ RMi×k
+ , Vi ∈ RNi×k

+ .
P, P− : These notations refer to the internal data structures
that are used by our method to identify which data instances
are present in which views and vice-versa (i.e which views
contain which data instances). This is illustrated in Figure 1
which shows three data instances that are uniquely identified
by their ID and four views. Instance A (ID 1) is present in

View 1 and View 3 only. Similarly, Instance B (ID 2) is present
in View 1, View 2 and View 3 only.
P = {P1, P2, . . . , Pv} where Pi denotes the view-to-instance
mapping for ith view. Formally, Pij ∈ [1, N ], ∀ 1 ≤ i ≤
v,∀ 1 ≤ j ≤ Ni. Pij gives us the ID of the jth instance in
view i. For example, View 1 in Figure 1 contains instances
with ID 1 and 2 only hence P11=1, P12=2.
P− is the inverse mapping which informs which views are
present for a given instance. P−(i) stores all the views which
contain the ith instance; in the form of (View, Row) pairs i.e.
P−(i) =

{
(l, r) | Plr = i

}
. Consider Instance A (ID 1) in

Figure 1 which is present in View 1 and View 3 only ; P−(1)
= {(1,1), (3,1)} as instance A is the first element in View 1
and View 3.
Matrix Access: Matrices are accessed in the following two
ways : (X)j indicates the jth row of matrix X; Xi,j or (X)i,j
indicates the element present in the ith row and jth column
of matrix X .

Fig. 1. View-to-Instance Mapping (P ) and Inverse Mapping (P−)

B. GPMVC Formulation
In a multi-view clustering setup one typically assumes

that a data point in different views would be assigned to the
same cluster with high probability. To enforce this intuition
in a NMF setting the coefficient matrices (Vi) learnt from
different views are softly regularized towards a common
consensus matrix (V ∗). This consensus matrix is considered
to reflect the latent structure shared by different views [3].
In a multi-view NMF clustering setup disagreement between
the ith coefficient matrix and consensus matrix i.e. ‖ Vi -
V ∗ ‖F is minimized. Note that as Vi from different views
might not be comparable at the same scale one needs to
adopt a normalization strategy [3]. Each coefficient matrix V
is normalized using matrix Q (where, Q is a diagonal matrix,
Qk,k =

∑
i Ui,k). This gives us the following multi-view

NMF-based clustering problem,

min
Ui,Vi,V ∗

v∑
i=1

(∥∥Xi − UiV
T
i

∥∥2
F
+ µi ‖ViQi − V ∗‖2F

)
(1)

s.t. Ui ≥ 0, Vi ≥ 0, ∀i s.t. 1 ≤ i ≤ v

The above model while learning a joint representation
(V ∗) of the data completely ignores the intrinsic geometrical
structure of each individual view. Prior work [1] has shown
that respecting the geometrical/low-dimensional manifold in-
formation can improve clustering quality. To enable this we
introduce an additional graph regularization penalty. Given



a similarity matrix W 2 one can define a smoothness penalty
term for each view as,

PenaltyGR =
1

2

Ni∑
j,l=1

‖(Vi)j − (Vi)l‖2 ×Wjl

= Tr(V T
i DiVi)− Tr(V T

i WiVi)

= Tr(V T
i LiVi)

(2)

where, Tr(.) denotes the trace of a matrix and D is a diagonal
matrix such that, Dj,j =

∑
jWj,l. L = D −W, is called

graph Laplacian 3. Fusing this with the previous model we
get the following optimization problem

min
Ui,Vi,V

∗

v∑
i=1

(∥∥Xi − UiV
T
i

∥∥2
F
+µi

∥∥ViQi − V ∗∥∥2
F
+λiTr(V

T
i LiVi)

)
s.t. Ui ≥ 0, Vi ≥ 0, ∀i s.t. 1 ≤ i ≤ v (3)

In order to support the partial view setup4 we utilize the
consensus matrix V ∗ that stores the latent structure of every
data instance which is present in at least one view. Given the
view-to-instance mappings Pi for each view, where Pij gives
us the ID of the jth instance in view i, we define V ∗Pi

∈
RNi×k

+ s.t. (V ∗Pi
)j = (V ∗)Pij

, 1 ≤ j ≤ Ni. Note, we use the
notation (X)j to indicate the jth row of matrix X . Using this
notation one can write a modified version of Equation 3 that
supports the partial-view setup

min
Ui,Vi,V

∗

v∑
i=1

(∥∥Xi − UiV
T
i

∥∥2
F
+µi

∥∥ViQi − V ∗
Pi

∥∥2
F
+λiTr(V

T
i LiVi)

)
s.t. Ui ≥ 0, Vi ≥ 0, ∀i s.t. 1 ≤ i ≤ v (4)

Equation 4 is a non-convex optimization problem and is thus
difficult to optimize. Since the loss is convex in each variable
individually, we separately optimize the loss with w.r.t each
variable. The details of this step is provided in the next section.

IV. THE ALGORITHM

As mentioned earlier the loss function in Equation 4 is con-
vex in each variable individually. Exploiting this structure we
optimize the loss function w.r.t each variable separately. This
is done till convergence. The algorithm flow is summarized in
Algorithm 1.
1. Initialization: Proper initialization of the basis and co-
efficient matrices play an important role in the overall per-
formance of the GPMVC algorithm. We initialize the view
specific basis and coefficient matrices (Ui, Vi) using infor-
mation present in the respective views. To achieve this we
apply single-view NMF clustering on examples without partial
views. The single-view optimization problem can thus be
written as (ignoring view indices),

min
U,V

∥∥X − UV T
∥∥2
F

+ λ Tr(V TLV ), s.t. U, V ≥ 0 (5)

This single-view, graph regularized loss can be minimized
using a multiplicative update procedure as shown in [14].
Note, this step is performed independently for each view.
Due to space constraints we skip details of the update steps.
Readers are encouraged to refer to [14] for further details.

2Computed using Heat, Dot-product or Nearest-Neighbor Kernel
3https://en.wikipedia.org/wiki/Laplacian matrix
4Not all instances are represented in all views

Algorithm 1: Graph Regularized Partial Multi-View
Clustering Algorithm (GPMVC)

Input : Nonnegative data matrix X1, . . . , Xv ,
parameters λ1, µ1, . . . , λv, µv , number of clusters
K, view-to-instance mapping P , inverse-mapping
P−

Output: Basis Matrices U1, . . . , Uv , Coefficient Matrices
V1, . . . , Vv and Consensus Matrix V ∗

1 Construct Graph Laplacians Li for each view;
2 Normalize Xi such that ‖Xi‖1 = 1 for each view ;
3 Initialize Ui, Vi and V ∗ by Eq. 5, Eq. 9;
4 repeat
5 for i← 1 to v do
6 repeat
7 Fix V ∗ and Vi, update Ui by Eq. 7;
8 Fix V ∗ and Ui, update Vi by Eq. 8;
9 Normalize Ui, Vi using Qi;

10 until objective function in Eq. 4 converges;
11 end
12 Fix U , V update V ∗ by Eq. 9;
13 until objective function in Eq. 4 converges;

2 Fixing V ∗, optimize over U and V: Once V ∗ is fixed,
each view can be optimized independently. Ignoring the view
indexes for now we use U , V , Q, λ, µ to denote Ui, Vi, Qi,
λi, µi (i.e. matrices and parameter for the ith view). This gives
rise to the following loss function and optimization problem

O(U, V ) =
∥∥X − UV T

∥∥2
F
+ µ ‖V Q− V ∗‖2

F
+ λ Tr(V TLV )

min
U,V

O(U, V ) s.t. U, V ≥ 0 (6)

We next derive the update rules that can be used to minimize
the optimization problem in Equation 6.

2.1 Fixing V ∗ and V, update U: Let ψ be the Lagrange
multiplier matrix for the constraint U ≥ 0, and L be the
Lagrange L(U, V ) = O(U, V ) + Tr(ψU), where O(U, V ) is
the loss function in Equation 6. Only considering terms that
involve U one can rewrite L(U, V ) as

L′(U) =
∥∥X − UV T

∥∥2
F
+ µ ‖V Q− V ∗‖2

F
+ Tr(ψU)

Note that Q is dependent on U and hence cannot be ignored.
The partial derivatives of L′ with respect to U is

∂L′

∂U
= 2UV TV + 2µP − 2XV + ψ

where, P =
(∑Mi

t=1 Ut,k
∑Ni

s=1 V
2
s,j −

∑Ni

t=1 Vt,jV
∗
Pij ,j

)
Using the Karush-Kuhn-Tucker (KKT) conditions i.e.
ψikUik = 0, we can derive the update rule

Ui,j = Ui,j ×

(
(XV )i,j + µ

∑Ni
t=1 Vt,jV

∗
Pij ,j

(UV TV )i,j + µ
∑Mi

t=1 Ut,k

∑Ni
s=1 V

2
s,j

)
(7)

2.2 Fixing V ∗ and U, update V: Using the same steps as
above and using the Lagrange multiplier matrix φ for the
constraint V ≥ 0, the objective function becomes

L′(V ) =
∥∥X − UV T

∥∥2
F
+µ ‖V Q− V ∗‖2

F
+λ Tr(V TLV )+ Tr(φV )



Following similar steps as before, we get the following update
rule for V

Vi,j = Vi,j ×

(
(XTU)i,j + µV ∗Pij ,j

+ λ (WV )i,j

(V UTU)i,j + µVi,j + λ (DV )i,j

)
(8)

3 Fixing U and V, update V ∗: We take the derivative of
O(U, V ) w.r.t V ∗

∂O

∂V ∗
=

∂
v∑

i=1

µi
∥∥Vi − V ∗Pi

∥∥2
F

∂V ∗
=

v∑
i=1

µi
(
− 2Vi + V ∗Pi

)
= 0

Solving this gives us a closed form solution

(V ∗)i =

∑
(l,r)∈P−(i) µl (Vl)r∑

(l,r)∈P−(i) µl
(9)

V ∗ provides us with a latent representation of the original
data points. Computation of the clusters is done by applying
a clustering algorithm (such as k-means) on V ∗.

Convergence As the GPMVC algorithm uses modifications to
the multiplicative update rules for NMF we borrow the same
convergence proof and guarantees as proposed in earlier work
[10].

V. EXPERIMENT

Datasets We use five publicly available text and image datasets
for our experiments (Table I).

Datasets Size # Views # Clusters

3Sources 169 3 6
Digit 2000 5 10
ORL 400 2 40

BBCSports 282 3 5
Cora 2708 2 7

TABLE I: Details of the datasets

• ORL: This two-view image dataset contains a set of 400
face images. We construct two views one based on raw
pixel values and the other comprising of HOG features.

• 3Sources: This three-view text dataset is collected from
three online news sources. In total there are 948 news ar-
ticles covering 416 distinct news stories. Of these stories,
169 were reported in all three sources. For our multi-view
experiments the dataset containing 169 articles was used.

• BBCSports: This text dataset is a collection of sports
news articles from the BBC Sport web site. For our multi-
view experiments we choose the 3 view dataset which
containing 282 reports.

• Digit: This image dataset is from the UCI repository
and consists of 2000 hand-written digits (0-9). This is
a 5-view dataset. Similar to [3], [7] for our two-view
experiments we consider the following two views: 216
profile correlations, 240 pixel averages in 2 x 3 windows.

• Cora: This dataset consists of 2708 scientific publi-
cations. We consider the following two views for our
experiments: number of citations between documents and
the term-document matrix.

Metrics: The clustering results are evaluated using the fol-
lowing three metrics : Accuracy (AC), Normalized Mutual
Information (NMI) and Purity (PUR). Due to space constraints
we only show NMI plots in this paper. Accuracy and Purity
plots along with the code for GPMVC is available on the
GitHub web site5.
Partial View Dataset Construction To construct a partial
view dataset we randomly select a fraction of the instances
to be partial examples i.e., these instances are described in
only one of the views, remaining data instances are complete
i.e. they appear in all views. For simplicity, we assume
that the incomplete instances (partial examples) are equally
shared amongst all the views. We later change this assumption
and report our results. The PER : Partial Example Ratio
dictates the fraction of partial examples in a given dataset.
For our experiments PER ranges from 10% to 90% with
20% as interval. Experiments are also conducted at PER=0%
which indicates all the views are complete (classic multi-
view clustering setup). In order to remove any bias in the
results due to the dataset construction process we construct
10 versions of the dataset for each value of PER. We evaluate
the performance of all the methods on these 10 datasets and
report mean values.
Baseline Algorithms We next describe the different two-
view and multi-view baseline algorithms against which we
benchmark our method. Except for PVC, no other algorithm
can be directly applied in the partial view setting (i.e. PER >
0%). In order to support such comparison we pre-process the
partial examples by first filling in missing information. This
is done using the ALM[11] matrix completion method, which
is similar to what was used in the PVC paper.

Common Baseline Algorithms: These algorithms are used
in both two-view and multi-view experiments
• CentroidSC: Centroid MV spectral clustering [6].
• PairwiseSC: The pairwise MV spectral clustering [7].
• BestViewNMF: Best single view results with NMF
• ConcatNMF: Concatenating the features of all the views,

and then running NMF directly on this concatenated view
representation.

• BestViewGNMF: Best single view results with Graph
Regularized NMF (GNMF) [1].

• ConcatGNMF: Concatenating the features of all the
views and running GNMF.

Apart from this we use PVC Partial View Clustering [8]
algorithm for our two-view experiments and MultiNMF: Multi
View clustering via NMF [3] for the multi-view experiments.

To achieve the final clustering of the examples (data in-
stances) the latent representations generated by GPMVC needs
to be clustered for which we use the k-means algorithm. Since
k-means is known to be sensitive to initialization we run it
20 times and report mean results. In our experiments we run
75− 100 iterations of the GPMVC algorithm. The number of
iterations is chosen empirically (convergence plots are shown
in Section V-B). The parameter values for the baseline methods
are tuned to achieve best performance on the datasets used.

5https://github.com/GPMVCDummy/GPMVC



SF (%) 10 30 70 90
PER (%) GPMVC PVC GPMVC PVC GPMVC PVC GPMVC PVC

10 0.810 0.708 0.810 0.729 0.807 0.762 0.801 0.773
30 0.792 0.598 0.794 0.641 0.785 0.727 0.788 0.763
50 0.777 0.498 0.774 0.555 0.774 0.670 0.774 0.738
70 0.779 0.390 0.734 0.467 0.730 0.634 0.754 0.704
90 0.772 0.317 0.702 0.425 0.684 0.606 0.738 0.724

TABLE II: NMI numbers on ORL (2 view)

SF(%) 10 30 70 90
PER (%) GPMVC PVC GPMVC PVC GPMVC PVC GPMVC PVC

10 0.900 0.632 0.886 0.632 0.875 0.608 0.882 0.604
30 0.880 0.630 0.866 0.629 0.825 0.527 0.808 0.507
50 0.828 0.614 0.789 0.614 0.728 0.482 0.733 0.453
70 0.811 0.582 0.688 0.582 0.655 0.446 0.679 0.445
90 0.748 0.555 0.637 0.555 0.588 0.460 0.638 0.493

TABLE III: NMI numbers on Digit (2 view)

Graph Laplacian Construction We employ the Dot-
product, Nearest Neighbor (NN) and Heat Kernel for the
construction of the graph laplacian that is used in the GPMVC
method. The dot-product kernel is used for the BBCSports
and 3Sources dataset. We employ the heat kernel for the ORL
dataset and the nearest neighbor kernel for the Digit and Cora
dataset. In our experiments a neighborhood of 5 is used for
the NN Kernel and the standard deviation of the heat kernel is
set to the median of the pair-wise Euclidean distance between
data points.

A. Results

Figure 2 and Figure 3 displays the results for the two-
view and multi-view experiments. All results presented in this
section are averaged across 10 runs of each method. From
both plots we see that the GPMVC method outperforms all the
baseline methods including PVC across the entire PER range.
At PER=0% which is the classical multi-view setting (i.e
all views are complete) the proposed GPMVC method either
matches or outperforms the baseline methods in all datasets.
The only exception to this is in the Digit (multi-view) experi-
ment, where BestViewGNMF performs marginally better than
GPMVC. This is due to the fact that BestViewGNMF consid-
ers only the (single) best performing view whereas GPMVC
considers all views (good or bad). As PER increases (from
10% to 90%) the GPMVC method outperforms PVC and other
baseline methods. The exception here is the ORL two-view
dataset where at PER=0% the CentroidSC and PairwiseSC
methods do marginally better than GPMVC. These methods
also match GPMVC performance @PER=10%. However, as
PER increases GPMVC starts outperforming these and other
baseline methods. Another observation, which is consistent
with what was shown in the PVC work, is that matrix comple-
tion methods like ALM might be less effective in the partial
view data setting due to the block-wise nature of missing data
as compared to missing at random, which is typically expected
by matrix completion methods. Another key observation is that
even at very high values of PER such as PER=90% GPMVC is
still able to get better results than PVC. We also note that PVC
performs better than existing baselines only for text datasets
- performance of PVC on image datasets is fairly poor. One
reasons for poor performance of GNMF is that the method

uses the laplacian, which is not very reliable in case of matrix
completed views. In fact, we noticed an improvement when
the graph regularization parameter was set to zero.

Skew in Distribution of Partial Examples Previous two-
view experiments assumed that for any given PER the partial
examples are equally distributed in both views. We change
this assumption by introducing a skew-factor (SF) which
controls how the partial examples are split between the two
views. For example, a skew-factor of 70% indicates that the
first view contains 70% of the partial examples, the rest
30% are assigned to the second view. We monitor how our
system performs vis-a-vis PVC at different PER, skew-factor
combinations and report these numbers in Table 2,3. Due
to space constraints we only show results for the Digit and
ORL dataset6. Our observations, which we present next, holds
true for the Cora dataset also. (i) GPMVC outperforms PVC
on all the two view datasets across the entire PER, skew-
factor range. (ii) For lower values of PER i.e. from PER=10%
to PER=50% (inclusive) NMI numbers for GPMVC vary
moderately with change in skew-factor (maximum variation
on ORL is 1% and on Digit 12%). On the other hand PVC
displays large variations in NMI for the same PER, skew-
factor range (maximum variation on ORL is 49% and on Digit
33%). This hints that GPMVC is less sensitive to the skew in
distribution of partial examples across views. (iii) For values of
PER above 50% even though GPMVC dominates we observer
large variations in the NMI numbers as skew-factor changes.

B. Convergence Study

Figure 4 shows convergence plots on the three two-view
datasets. As the plots indicate the objective function value
monotonically decreases as the iterations increase. The objec-
tive function and NMI metric value plateaus typically after 40
iterations of the GPMVC algorithm. Due to space restrictions
we only show convergence plots for NMI in the two-view
setting.
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Fig. 4. NMI AND OBJECTIVE FUNCTION VALUE V.S. ITERATIONS OF
GPMVC ALGORITHM @PER=50%

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the GPMVC (Graph Regularized
Partial Multi-View Clustering) method, which is an extension

6The GitHub URL shows additional plots
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Fig. 2. NMI VALUES VS. PER FOR TWO VIEW DATASETS (BEST VIEWED IN COLOR)
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Fig. 3. NMI VALUES VS. PER FOR MULTI-VIEW DATASETS (BEST VIEWED IN COLOR)

to the PVC method for partial view datasets. We extend the
PVC method to support multi-views and view-specific graph
laplacian regularization. This enables our method to exploit the
intrinsic geometry of the data distribution in each view. In our
experiments we compared our method against 7 baselines on
5 publicly available datasets. In almost all settings our method
outperformed existing competitive baselines. As future work
we would like to investigate ways by which we can scale up
GPMVC method to large datasets.
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