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INTRODUCTION



TASK

- Multi-view learning algorithms aim at exploiting the
complementary information present in different views.

- Most methods assume that each example appears in all views.
- Such an assumption is too restrictive in real world settings.

- Task: Classification and clustering when (possibly) every view
suffers from missing information.



RELATED WORK

- Multi-View K-Means: Extension of K means to multiple views after
modifying cost function

- Multi-View Spectral Clustering: Such approaches exploit some
similarity measure between objects [5] [6]

- Multi-View Subspace Clustering: Such methods assume that the
views are generated from a common subspace [3]

- Multi-view clustering with partial examples: Addresses the
scenario where every view might suffer from missing information

[4]



MOTIVATION



NON NEGATIVE MATRIX FACTORIZATION

In NMF we choose factors U and V of X such that the following
objective is minimized,

2
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Advantages of Non Negative Matrix Factorization,

- Due to the non negativity constraints, NMF produces an 'additive’
parts-based representation of the data matrix X.

- Consequently, the factors of X are generally naturally sparse.

- Leads to impressive benefits in terms of interpretability of its
factors.



INTUITION

- Samples in different views should be assigned to similar clusters

[2]
o - v
- Q; [2] added for normalization’

2
term added to loss
F

- Respect the intrinsic geometrical representation of each view.
- XNTr(VIL:V:) term’ added for Graph Regularization [1].

- In order to support partial view setup?, we introduce
view-to-instance mappings P;' for each view.



LOSS FUNCTION

- Based on the previous discussions, the loss function is,
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METHODOLOGY




OUR APPROACH

- As discussed previously,

v

2
min (Hx,-fu,-v,THFJru,- HV,-Q,-fV;,

U/’,V‘ 7‘/* .
i=1

2 T
+ )\,‘TI'(V,' L,‘V,'))
F

st. Up>0,Vi>0,Vi st.1<i<v

- This is non-convex optimization problem and is thus difficult to
optimize.

- Since the loss is convex in each variable individually, we
separately optimize the loss with w.rt each variable.

- Such an alternate optimization is repeated till convergence.



OUR ALGORITHM'

Algorithm 1: Graph Regularized Partial Multi-View Clustering Algorithm (GPMVC)

Input : Nonnegative data matrix Xy, . .., Xy; Parameters A1, 1, . . ., Ay, uy; Number of clusters K;
View-to-Instance mapping P; Inverse-Mapping P~
Output: Basis Matrices Uy, . . ., Uy; Coefficient Matrices V4, ..., V, and Consensus Matrix V*

Construct Graph Laplacians L; for each view;
Normalize X; such that ||X;||y = 1for each view;
Initialize U;, V; and V* by Eq. 5, Eq. 9;
repeat
fori < 1tovdo
repeat
Fix V* and V;, update U; by Eq. 7;
Fix V* and U;, update V; by Eq. 8;
Normalize U;, V; using Q;;
until objective function in Eq. 4 converges;
end
Fix U, V update V* by Eq. 9;

until objective function in Eq. 4 converges;




RESULTS




DATASET DESCRIPTION

We use five publicly available text and image datasets for our
experiments. The dataset statistics are described below,

Datasets Size  #Views # Clusters

3Sources 169 3 6
Digit 2000 5 10
ORL 400 2 40

BBCSports 282 3 5
Cora 2708 2 7

Table: Dataset statistics



PARTIAL VIEW DATASET CONSTRUCTION

- Randomly select a fraction of the instances to be partial examples
i.e., they are present in only one of the views, remaining instances
are complete.

- The incomplete instances (partial examples) are equally shared
amongst all the views. The Partial Example Ratio (PER) dictates the
fraction of partial examples.

- We later change this assumption (Of equally sharing partial
examples) by introducing a skew factor (SF).



QUANTITATIVE RESULTS
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Figure: NMI VALUES vS. PER FOR TWO VIEW DATASETS
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QUANTITATIVE RESULTS
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Figure: NMI VALUES VS. PER FOR MULTI-VIEW DATASETS



QUALITATIVE RESULTS

Effect of Skew: The Skew Factor (SF) controls how the partial
examples are distributed between the two views.

SF(%) 10 30 70 90

PER (%) | GPMVC PVC GPMVC PVC GPMVC PVC GPMVC PVC
10 0.900 | 0632 | 0.886 | 0.632 | 0.875 | 0.608 | 0.882 | 0.604
30 0.880 | 0630 | 0.866 | 0.629 | 0.825 | 0.527 | 0.808 | 0.507
50 0.828 | 0.614 | 0.789 | 0.614 | 0.728 | 0482 | 0.733 | 0.453
70 0.811 | 0.582 | 0.688 | 0.582 | 0.655 | 0.446 | 0.679 | 0.445
90 0.748 | 0.555 | 0.637 | 0.555 | 0.588 | 0.460 | 0.638 | 0.493

Table: NMI on Digit (2 view)
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