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introduction



Task

∙ Multi-view learning algorithms aim at exploiting the
complementary information present in different views.

∙ Most methods assume that each example appears in all views.
∙ Such an assumption is too restrictive in real world settings.
∙ Task: Classification and clustering when (possibly) every view
suffers from missing information.
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Related Work

∙ Multi-View K-Means: Extension of K means to multiple views after
modifying cost function

∙ Multi-View Spectral Clustering: Such approaches exploit some
similarity measure between objects [5] [6]

∙ Multi-View Subspace Clustering: Such methods assume that the
views are generated from a common subspace [3]

∙ Multi-view clustering with partial examples: Addresses the
scenario where every view might suffer from missing information
[4]
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motivation



Non Negative Matrix Factorization

In NMF we choose factors U and V of X such that the following
objective is minimized,

min
U,V

∥∥∥X− UVT
∥∥∥2
F

s.t. U ≥ 0, V ≥ 0

Advantages of Non Negative Matrix Factorization,

∙ Due to the non negativity constraints, NMF produces an ’additive’
parts-based representation of the data matrix X.

∙ Consequently, the factors of X are generally naturally sparse.
∙ Leads to impressive benefits in terms of interpretability of its
factors.
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Intuition

∙ Samples in different views should be assigned to similar clusters
[2]

∙ µi

∥∥∥ViQi − V∗
∥∥∥2
F
term added to loss

∙ Qi [2] added for normalization1

∙ Respect the intrinsic geometrical representation of each view.
∙ λiTr(VTi LiVi) term1 added for Graph Regularization [1].

∙ In order to support partial view setup2, we introduce
view-to-instance mappings Pi1 for each view.

1Details in the paper
2Not all instances represented in all views
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Loss function

∙ Based on the previous discussions, the loss function is,

min
Ui,Vi,V∗

v∑
i=1

(∥∥∥Xi − UiVTi
∥∥∥2
F
+ µi

∥∥∥ViQi − V∗Pi
∥∥∥2
F
+ λiTr(VTi LiVi)

)
s.t. Ui ≥ 0, Vi ≥ 0, ∀i s.t. 1 ≤ i ≤ v
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methodology



Our Approach

∙ As discussed previously,

min
Ui,Vi,V∗

v∑
i=1

(∥∥∥Xi − UiVTi
∥∥∥2
F
+ µi

∥∥∥ViQi − V∗Pi
∥∥∥2
F
+ λiTr(VTi LiVi)

)
s.t. Ui ≥ 0, Vi ≥ 0, ∀i s.t. 1 ≤ i ≤ v

∙ This is non-convex optimization problem and is thus difficult to
optimize.

∙ Since the loss is convex in each variable individually, we
separately optimize the loss with w.r.t each variable.

∙ Such an alternate optimization is repeated till convergence.
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Our Algorithm1

Algorithm 1: Graph Regularized Partial Multi-View Clustering Algorithm (GPMVC)
Input : Nonnegative data matrix X1, . . . , Xv ; Parameters λ1, µ1, . . . , λv, µv ; Number of clusters K;

View-to-Instance mapping P; Inverse-Mapping P−
Output: Basis Matrices U1, . . . , Uv ; Coefficient Matrices V1, . . . , Vv and Consensus Matrix V∗

1 Construct Graph Laplacians Li for each view;
2 Normalize Xi such that ∥Xi∥1 = 1 for each view ;
3 Initialize Ui , Vi and V∗ by Eq. 5, Eq. 9;
4 repeat
5 for i← 1 to v do
6 repeat
7 Fix V∗ and Vi , update Ui by Eq. 7;
8 Fix V∗ and Ui , update Vi by Eq. 8;
9 Normalize Ui , Vi using Qi ;
10 until objective function in Eq. 4 converges;
11 end
12 Fix U, V update V∗ by Eq. 9;
13 until objective function in Eq. 4 converges;

1Details regarding the equations and algorithm present in paper
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results



Dataset Description

We use five publicly available text and image datasets for our
experiments. The dataset statistics are described below,

Datasets Size # Views # Clusters

3Sources 169 3 6
Digit 2000 5 10
ORL 400 2 40

BBCSports 282 3 5
Cora 2708 2 7

Table: Dataset statistics
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Partial View Dataset Construction

∙ Randomly select a fraction of the instances to be partial examples
i.e., they are present in only one of the views, remaining instances
are complete.

∙ The incomplete instances (partial examples) are equally shared
amongst all the views. The Partial Example Ratio (PER) dictates the
fraction of partial examples.

∙ We later change this assumption (Of equally sharing partial
examples) by introducing a skew factor (SF).

1To reduce bias, we report the average results on 10 versions of the dataset for each PER.
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Quantitative Results

PER (%)
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Figure: NMI values vs. PER for Two View datasets
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Quantitative Results
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Qualitative Results

Effect of Skew: The Skew Factor (SF) controls how the partial
examples are distributed between the two views.

SF(%) 10 30 70 90
PER (%) GPMVC PVC GPMVC PVC GPMVC PVC GPMVC PVC
10 0.900 0.632 0.886 0.632 0.875 0.608 0.882 0.604
30 0.880 0.630 0.866 0.629 0.825 0.527 0.808 0.507
50 0.828 0.614 0.789 0.614 0.728 0.482 0.733 0.453
70 0.811 0.582 0.688 0.582 0.655 0.446 0.679 0.445
90 0.748 0.555 0.637 0.555 0.588 0.460 0.638 0.493

Table: NMI on Digit (2 view)

1PVC: Multi View Clustering with Partial Examples [4]
2GPMVC: Our Proposed Approach
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