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Abstract

We have seen impressive progress in perception algorithms in recent years. Although we have seen a remark-

able increase in performance as well as efficiency lately, their heavy dependence on annotated data limits

applicability and hinders their deployment to newer tasks. We live in an era where data generation is hap-

pening at frightening speeds and scales, observing uploads of millions of pictures and videos daily. However,

due to the complexity and manual labor involved in curating new datasets, such a massive reservoir of rich

data is unable to be utilized by algorithms dependent on supervision.

Learning without supervision, i.e., unsupervised learning has long been treated as the holy grail of ma-

chine learning as it mimics the behaviour of humans who learn without the need for explicit supervision.

Despite the presence of numerous approaches in this sub-field, their adoption was limited due to the reduced

performance compared to their supervised counterparts. Recent approaches have explored reducing the need

for supervision by utilizing implicit relationships present in unlabeled datasets. To this effect, research in

multi view learning and self-supervised learning has led to impressive improvements. However, their inter-

section still remains largely unexplored. Although there has been rich research exploring the reduction of

supervision in images, there is a dearth of similar approaches tackling videos which is arguably the future of

perception. On the one hand, the additional temporal dimension leads to added complexity in videos, while

on the other, it provides further implicit structure which can be used effectively.

Recently, self-supervision has proved itself to be a promising approach reducing the need for manual

supervision drastically while maintaining competitiveness with other approaches. There has recently been a

surge in interest for approaches utilizing self-supervised methods for visual representation learning. Recent

advances in visual representation learning [9, 25] have demonstrated impressive performance even compa-

rable to their supervised equivalents under specific settings. Continued research in this direction will enable

future data-driven models to become increasingly more robust and performant using the vast amount of un-

labeled data present in our world.

The idea of utilizing multiple modalities of information has been a well-established one with roots in

human perception [11, 28]. It’s argued that useful higher order semantics are present throughout different

modalities and are consistent across them. At the same time, different modalities provide complementary

information which can be utilized to aid learning in other modalities. Multi-view learning has been a popular

direction [69, 80] utilizing these traits to improve representation quality. Recent approaches learn features
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utilizing multiple modalities with the motivation that information shared across modalities has valuable se-

mantic meaning.

My research goal in this thesis is to utilize the implicit structure in multi-modal videos to improve per-

formance of perception algorithms as well as explore self-supervised approaches exploiting this implicit

structure. It is argued that useful higher order semantics are present throughout different modalities and are

consistent across them. At the same time, different modalities provide complementary information which can

be utilized to aid learning.

In the beginning of this thesis, I explore the utility of multi-view learning and study its role in designing

a self-supervised approach using multi-view associations. Recently, self-supervision has proved itself to be a

promising approach reducing the need for manual supervision drastically while maintaining competitiveness

with other approaches. I propose Cooperative Contrastive Learning, which utilizes multiple modalities of

data to propose associations and leads to improved visual representations. Our main motivation is that each

view sees a specific pattern, which can be useful to guide other modalities and improve representations.

Next, I present the Home Action Genome project with the goal of improving action understanding. Home

Action Genome (HOMAGE) is a new benchmark for action recognition, that includes multi-modal synchro-

nized videos from multiple viewpoints along with hierarchical action and atomic action labels. Actions in

residential settings are challenging as we deal with long-term actions, interactions with objects, and frequent

occlusions. Having multiple modalities and sensors to handle occlusions and scene graph information to cap-

ture object interaction allows us to tackle these complexities. I outline the impact having such rich modalities

has on learning and potentially encouraging other lines of research.

After discussing the specifics of the Home Action Genome dataset, I discuss approaches which utilize

the rich modalities present to build models which demonstrate improved performance. We also discuss the

effectiveness of utilizing hierarchical labels and their effect on the overall robustness of our model. Together,

we show the positive impact using cues from multiple camera views and modalities along with action com-

positions has on holistic performance.

Finally, I suggest multiple future applications of our dataset and proposed approaches. Overall, this thesis

focuses on how utilizing multi-view datasets can both reduce the need for supervision while maintaining

comparable performance as well as enabling existing models to improve performance and robustness. In

conjunction, I hope this encourages research in this direction and brings us closer to the goal of learning

without supervision.
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Chapter 1

Introduction

1.1 Motivation

Learning without supervision has been treated as the holy grail of machine learning for a long time. It mim-

ics the behaviour of humans who learn without the need for explicit supervision. Despite the presence of

numerous approaches in this sub-field, their adoption was limited due to the reduced performance compared

to their supervised counterparts. Recent approaches have explored utilizing implicit relationships present in

unlabeled datasets. To this effect, research in multi view learning and self-supervised learning has led to

impressive improvements. However, their intersection still remains largely unexplored. Although there has

been rich research exploring the reduction of supervision in images, there is a dearth of similar approaches

tackling videos which is arguably the future of perception. On the one hand, the additional temporal dimen-

sion leads to added complexity in videos, while on the other, it provides further implicit structure which can

be used as supervision.

Self-supervision has been a promising development in reducing the amount of supervision needed to learn

effectively. Recently, self-supervision has proved itself to be a promising approach reducing the need for

manual supervision drastically while maintaining competitiveness with other approaches. There has recently

been a surge in interest for approaches utilizing self-supervised methods for visual representation learning.

Recent advances in visual representation learning [9, 25] have demonstrated impressive performance even

comparable to their supervised equivalents under specific settings. Continued research in this direction will

enable future data-driven models to become increasingly more robust and performant using the vast amount

of unlabeled data present in our world. Yet another promising direction to learn improved representations

is multi-view learning. The idea of utilizing multiple views of information has been a well-established one

with roots in human perception [11, 28]. It’s argued that useful higher order semantics are present throughout

different views and are consistent across them. At the same time, different views provide complementary

information which can be utilized to aid learning in other views. Recent contributions have explored the

1
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Figure 1.1: Given a pair of instances (e.g. people doing squats) and corresponding multiple views, features are computed
using view-specific deep encoders f ’s. Different instances may have contrasting similarities in different views. For
instance, V0 (left) and V1 (right) have similar optical-flow o = fflow and pose keypoints (keypoint) p = fkeypoint

features but their image i = frgb features are far apart. CoCon leverages these inconsistencies by encouraging the
distances in all views to become similar. High similarity of o0, o1 and p0, p1 nudges i0, i1 towards each other in the RGB
space.

intersection of multi-view learning and self-supervised learning [69, 80] utilizing these traits to improve rep-

resentation quality. Using both self-supervision as well as multi view information to aid action understanding

is great combination to tackle the challenges posed by the problem.

Action understanding in videos is a critical task with various use cases and real-world applications, from

robotics [47, 66] and human-computer interaction [68] to healthcare [23, 50] and elderly behavior monitoring

[30, 51]. Despite the recent success of deep learning methods for image classification, complex and holistic

action or event understanding remains an elusive task.

There are several challenges associated with the task of action understanding. The inherent variability in

executing complex activities poses one of the most critical difficulties in building action understating models.

To understand these challenges, it is essential to understand what actions are composed of. As opposed to

bounding boxes in the object detection task, actions are composed of various parts spanned in space and time.

For instance, the action of “laundry” involves multiple entities, e.g., humans, objects, and their relationships,

and is composed of a number of atomic actions. Such partonomy of actions [5, 32, 89] both in space and

time defines a hierarchical structure. Furthermore, to capture the variability in executing complex activities,

understanding each part (e.g., body limbs, objects, or atomic actions) becomes crucial. Since actions happen

in the 3D world, a holistic understanding of the world requires capturing the subtle movements or parts using
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Figure 1.2: Given an activity instance (e.g., ‘do laundry’) and corresponding multiple views, we compute features using
modality-specific deep encoders (f modules). Different modalities may capture different semantic information regarding
the action. Cooperatively training all modalities together allows us to see improved performance. We utilize training using
both video-level and atomic action labels to allow both the videos and atomic actions to benefit from the compositional
interactions between the two. As discussed in the results, we see significantly improved performance when using the
above components together.

multiple modalities (e.g., RGB and audio) and from multiple viewpoints.

Each of these challenges has previously been separately investigated using different datasets and ad-

vanced methods. For instance, numerous datasets were put together for generic action recognition and spatio-

temporal localization in YouTube or broadcasting third-person videos, such as Kinetics [6], Charades [72],

ActivityNet [14], UCF101 [76]. Other datasets such as EPIC Kitchens [10] were used for ego-centric action

recognition. Action Genome [32] focused on using scene information in action recognition, while others [53]

focused on hierarchical action modeling from events to low-level atomic actions. Several studies target learn-

ing from long instructional videos and release datasets [8, 55, 79, 91] for the same, exploring the partonomy

of actions in long sequences. Others also focused on observing and recognizing actions from multiple views,

such as LEMMA [34] and HumanEva [71]. In parallel, there have been numerous recent advances in con-

trastive and cooperative learning [9, 22] applied to multimodal and multi-view datasets as a self-supervised

pre-training strategy to improve downstream recognition results. Despite all these advances, action under-

standing and generalizability of such models remains a challenging problem due to the complexities brought

by their complicated nature and numerous object interactions. Multi-modal approaches [69, 74, 80] have

shown superior performance in tackling such issues. However, there is still a need for a benchmark that

unifies all these challenges and tasks. In this thesis, we discuss a dataset along with a novel method for

hierarchical action recognition to tackle these problems.
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Apart from multi-modal perception, self-supervised approaches allow us to further exploit explicit struc-

ture in our data to improve performance. Videos are a rich source for self-supervision, due to the inherent

temporal consistency in neighboring frames. A natural approach to exploit this temporal structure is pre-

dicting future context as done in [20, 29, 49, 54]. Such approaches perform future prediction in mainly two

ways: (1) predicting a reconstruction of future frames [49, 54, 77], (2) predicting features representing the

future frames [20, 29]. If the goal is learning high-level semantic features for other downstream tasks, then

complete reconstruction of frames is unnecessary. Inspired by developments in language modelling [57], re-

cent work [83] propose losses that only focus on the latent embedding using frame-level context. One of the

more recent approaches [20] propose utilizing spatio-temporal context to learn meaningful representations.

Even though such developments have led to improved performance, the quality of the learned features is still

lagging behind that of their supervised counterparts. In this thesis, we explore the intersection of multi-modal

and self-supervised learning and propose a cooperative algorithm which allows us to learn improved video

representations.

1.1.1 Thesis Outline

We discuss multiple contributions in this thesis. We first introduce an approach to utilize multi-modal cues

to enable self-supervised video understanding resulting in a drastic reduction in the amount of supervision

needed. We then introduce the Home Action Genome dataset, that includes multi-modal synchronized videos

from multiple viewpoints along with hierarchical action and atomic action labels. Finally, we propose an

approach allowing us to use the rich annotations provided in Home Action Genome, demonstrating the ro-

bustness and improved performance of our proposed model. The thesis proceeds as follows: In Chapter 2,

we provide a detailed description of utilizing multi-view cues to propose a new self supervised algorithm.

Chapter 3 discusses the Home Action Genome dataset in detail and touches upon the benefits of having such

a richly annotated dataset. Chapter 4 presents an approach to utilize the multi-modal and multi-camera-view

data along with the rich annotations provided in Home Action Genome. We discuss the performance benefits

and generalizability of our new model through some quantitative and qualitative experiments. The thesis

concludes in Chapter 5 where we briefly list potential future directions and applications of our research.

Further visualizations, code, dataset and additional information on the projects can be found here1 and

here2.

1.1.2 Previously Published Papers

Most contributions in this thesis have first appeared as various publications. These publications are: [63]

(Chapter 2) and [64] (Chapter 3, 4).

1https://github.com/nishantrai18/cocon
2http://homeactiongenome.org/



Chapter 2

Learning with Multiple Modalities

2.1 Introduction

There has recently been a surge in interest for approaches utilizing self-supervised methods for visual rep-

resentation learning. Recent advances in visual representation learning have demonstrated impressive per-

formance compared to their supervised counterparts [9, 25]. Fresh development in the video domain have

attempted to make similar improvements [20, 29, 49, 69].

Videos are a rich source for self-supervision, due to the inherent temporal consistency in neighboring

frames. A natural approach to exploit this temporal structure is predicting future context as done in [20,

29, 49, 54]. Such approaches perform future prediction in mainly two ways: (1) predicting a reconstruction

of future frames [49, 54, 77], (2) predicting features representing the future frames [20, 29]. If the goal is

learning high-level semantic features for other downstream tasks, then complete reconstruction of frames is

unnecessary. Inspired by developments in language modelling [57], recent work [83] propose losses that only

focus on the latent embedding using frame-level context. One of the more recent approaches [20] propose

utilizing spatio-temporal context to learn meaningful representations. Even though such developments have

led to improved performance, the quality of the learned features is still lagging behind that of their supervised

counterparts.

Due to the lack of labels in self-supervised settings, it is impossible to make direct associations between

different training instances. Instead, prior work has learned associations based on structure, either in the

form of temporal [20, 38, 44, 52, 86] or spatial proximity [20, 35, 38, 59] of patches extracted from training

images or videos. However, the contrastive losses utilized enforce similarity constraints between instances

from same videos while pushing instances from other videos far away even if they represent the same semantic

content. This inherent drawback forces learning of features with limited semantic knowledge and encourage

performing low-level discrimination between different videos. Recent approaches suffer from this restriction

leading to poor representations.

The idea of utilizing multiple modes of information has been a well-established one with roots in human

5
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perception [11, 28]. It’s argued that useful higher order semantics are present throughout different modes and

are consistent across them. At the same time, different modes provide complementary information which

can be utilized to aid learning in other modes. Multi-view learning has been a popular direction [69, 80]

utilizing these traits to improve representation quality. Recent approaches learn features utilizing multiple

modes with the motivation that information shared across modes has valuable semantic meaning. A major-

ity of these approaches directly utilize core ideas such as contrastive learning [60] and mutual information

maximization [4, 46, 88]. Although the fusion of modes leads to improved representations, such approaches

also utilize contrastive losses, consequently suffering from the same drawback of low-level discrimination

between similar instances.

We propose Cooperative Contrastive Learning (CoCon), which overcomes this shortcoming and leads to

improved visual representations. Our main motivation is that each mode sees a specific pattern, which can

be useful to guide other modes and improve representations. Our approach utilizes inter-view information

to avoid the drawback of discriminating similar instances discussed earlier. To this end, each mode sees

a different aspect of the videos, allowing it to suggest potentially similar instances to other modes. This

allows us to infer implicit relationships between instances in a self-supervised multi-modal setting, something

which we are the first to explore. These associations are then used in order to learn better representations for

downstream applications such as video classification and action recognition. Fig. 5.2 shows an overview

of CoCon. It is worth noting that although CoCon utilizes building blocks currently used in self-supervised

representation learning, it is applicable to other tasks utilizing contrastive learning and be used in conjunction

with other recently proposed methods. We provide more details about our approach in latter sections.

2.2 Related Work

2.2.1 Self-supervised Learning from images

Recent approaches have tackled image representation learning by exploiting color information [43, 90] and

spatial relationships [59, 67], where relative positions between image patches are exploited as supervisory

signals. Several approaches apply self-supervision to super-resolution [13, 36] or even to multi-task [12] and

cross-domain [65] learning frameworks.

2.2.2 Self-supervised Learning from videos

Multiple approaches [20, 29, 49, 54, 77] perform self-supervision through ‘predicting’ future frames. How-

ever, the term ‘predicting’ is overloaded, as they do not directly predict and reconstruct frames but instead

operate on latent representations. This ignores stochasticity of frame appearance, e.g., illumination changes,

camera motion, appearance changes due to reflections and so on, allowing the model to focus on higher-order

semantic features. Recent work [20, 80] utilize Noise Contrastive Estimation to perform prediction of the

latent representations rather than the exact future frames, vastly improving performance. Yet, another class
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of proxy tasks are based on temporal ordering of frames [56, 86]. Temporal coherence [31, 85] and 3D puzzle

[38] were used as proxy loss to exploit spatio/temporal structures.

2.2.3 Multi-view learning

Multiple modes of videos are rich sources of information for self-supervised learning [69, 80, 84]. Two

stream networks for action recognition [74] have led to many competitive approaches, which demonstrate

using even derivable modes such as optical flow helps improve performance considerably. There have been

approaches [52, 69, 80, 84] utilizing diverse modes, sometimes derivable from one other, to learn better rep-

resentations. However, these approaches utilize inter-view links by maximizing mutual information between

them. Although this leads to improved performance, we believe the rich inter-view linkages can be utilized

more effectively by utilizing them to uncover implicit relationships between instances.

2.2.4 Multi-View Self-supervised learning

Multiple recent approaches [3, 21, 22, 62] have tackled the challenge of multi-modal self-supervised learning

achieving impressive performance. However, these approaches suffer from the same drawback of discrimi-

nating between similar instances, leaving potential to benefit from inter-sample relationships.

Most approaches above perform self-supervision using positive and negative pairs mined through struc-

tural constraints, e.g., temporal and spatial proximity. Although this results in representations that capture

some degree of semantic information, it incorrectly leads to treating similar actions differently due to the

inherent nature of their pair-mining. For instance, clip pairs in different videos are considered negatives, even

if they represent the same action. We argue that utilizing different modes and inter-instance relationships to

propose positive pairs to aid training can lead to improvement of all modes simultaneously.



Chapter 3

Cooperative Contrastive Learning

3.1 Introduction

In the previous chapter, we discussed how multi modal learning can be integrated with self-supervised learn-

ing to learn effective video representations. In this section, we take a deeper look at our proposed approach

and formulate how we utilize multi modal cues to cooperatively improve learnt representations across modal-

ities.

We propose Cooperative Contrastive Learning (CoCon), which overcomes this shortcoming and leads to

improved visual representations. Our main motivation is that each view sees a specific pattern, which can

be useful to guide other views and improve representations. Our approach utilizes inter-view information

to avoid the drawback of discriminating similar instances discussed earlier. To this end, each view sees a

different aspect of the videos, allowing it to suggest potentially similar instances to other views. This allows

us to infer implicit relationships between instances in a self-supervised multi-view setting, something which

we are the first to explore. These associations are then used in order to learn better representations for

downstream applications such as video classification and action recognition. Fig. 5.2 shows an overview

of CoCon. It is worth noting that although CoCon utilizes building blocks currently used in self-supervised

representation learning, it is applicable to other tasks utilizing contrastive learning and be used in conjunction

with other recently proposed methods.

We use ‘freely’ available views of the input such as RGB frames and Optical Flow. We also explore the

benefit of using high-level inferred semantics as additional noisy views, such as human pose keypoints and

segmentation masks generated using off-the-shelf models [87]. These views are not independent, as they can

be derived from the original input images. However, they are complementary and lead to significant gains,

demonstrating CoCon’s effectiveness even with noisy related views. The extensible nature of our framework

and the ‘freely’ available views used make it possible to use CoCon with any publicly available video dataset

and other contrastive learning approaches.

8
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3.2 Method

We describe cooperative contrastive learning (CoCon) and intuition behind our designs in this section.In the

following sections, we build our framework borrowing the learning framework present in [20] which learns

video representations through spatio-temporal contrastive losses. It should be noted that even though we use

this particular self-supervised backbone in our experiments, our approach is not restricted by the choice of

the underlying self-supervised task. CoCon can be used in conjunction with any other frameworks currently

present and allow them to be extended to a multi-modal setting.

A video V is a sequence of T frames (not necessarily RGB images) with resolution H × W and C

channels, {i1, i2, . . . , iT }, where it ∈ RH×W×C . Assume T = N ∗ K, where N is the number of blocks

and K denotes the number of frames per block. We partition a video clip V into N disjoint blocks V =

{x1,x2, . . . ,xN}, where xj ∈ RK×H×W×C and a non-linear encoder f(.) transforms each input block xj
into its latent representation zj = f(xj). An aggregation function, g(.) takes a sequence {z1, z2, . . . , zj}
as input and generates a context representation cj = g(z1, z2, . . . , zj). In our setup, zj ∈ RH′×W ′×D and

cj ∈ RD. D represents the embedding size and H ′, W ′ represent down-sampled resolutions as different

regions in zj represent features for different spatial locations. We define z′j = Pool(zj) where z′j ∈ RD and

c = F (V ) where F (.) = g(f(.)).

Similar to [20], we create a prediction task involving predicting z of future blocks. For multiple modes,

we define cv = Fv(Vv), where Vv , cv and Fv represent the input, context feature and composite encoder for

mode v respectively.

3.2.1 Contrastive Loss

Noise Contrastive Estimation (NCE) [18, 57, 60] constructs a binary classification task where a classifier is

fed with real and noisy samples with the training objective being distinguishing them. Similar to [20, 60], we

use an NCE loss over our feature embeddings described in Eq 3.1. zi,k represents the feature embedding for

the ith time-step and the kth spatial location. Recall zj ∈ RH′×W ′×D which preserves the spatial layout. We

normalize zi,k to lie on the unit hypersphere. Eq 3.1 is a cross-entropy loss distinguishing one positive pair

from all the negative pairs present in a video. We use temperature τ = 0.005 in our experiments. In a batch

setting with multiple video clips, it is possible to have more inter-clip negative pairs.

To extend this to multiple modes, we utilize different encoders φv for each mode v. We train these

encoders by utilizing Lcpc for each of them independently, giving us, Lcpc =
∑

v Lv
cpc

Lcpc = −
∑
i,k

(
log

exp(z̃i,k · zi,k / τ)∑
j,m exp(z̃i,k · zj,m / τ)

)
(3.1)
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Figure 3.1: Examples for each mode. From top to bottom - RGB, Flow, SegMasks and Poses. Note the
prevalence of noise in a few samples, specially SegMasks; There are multiple other instances where Poses,
SegMasks are noisy but have not been shown here.
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3.2.2 Cooperative Multi-View Learning

Recent approaches [22, 69, 80] tackle multi-modal self-supervised learning by maximizing mutual informa-

tion across modes. They involve using positive and negative pairs generated using structural constraints,

e.g., spatio-temporal proximity in videos [20, 21, 69, 80]. Although such representations capture semantic

content, they unintentionally encourage discriminating video clips containing semantically similar content

due to the inherent nature of pair generation, i.e. video clips from different videos are negatives. We utilize

inter-instance relationships to alleviate some of these issues.

We soften this constraint by indirectly deriving pair proposals using different modes. Such a co-operative

scheme benefits all models as each individual mode gradually improves. Better models are able to generate

better proposals, improving performance of all modes creating a positive feedback loop. Our belief is that

significant semantic features should be universal across modes, therefore, potential incorrect proposals from

one mode should cancel out through proposals from other modes.

We achieve the above by computing mode-specific distances and synchronizing them across all modes.

We enforce a consistency loss between distances from each mode. Looking at it from another perspective, we

are encouraging relationships between instances to be the same across modes i.e. similar pairs in one mode

should be a similar pair in other modes as well. Treating this as inter-view graph regularization, we create a

graph similarity matrix Wv of size K ×K, using some distance metric. We represent our distance metric by

D(.). In our experiments, we use the cosine distance which translates to W v
ab = zz · zb.

Assume hav denotes the representation for the vth mode of instance a. In our experiments, we use h = z′

giving us block level features. Our resultant loss becomes the inconsistency between similarity matrices

across modes. The resultant graph regularization loss becomes
∑

v0,v1
‖W v0 −W v1‖ which is simplified in

Eq 3.2.

Building on top of our earlier intuition, in order to have sensible proposals, we need to have discriminative

scores, i.e. we should have both positive (D → 0) and negative (D → 1) pairs. To promote well distributed

distances, we utilize the hinge loss described in Eq 3.3.

Lsim is the hinge loss, where the first term pushes representations of the same instance in different modes

closer; while the second term pushes different instances apart. Since the number of structural negative pairs

are much larger than the positives, we introduce µ in order to balance the loss weights. We choose µ such

that the first and second components contribute equally to the loss.

Lsync =
∑
v0,v1

∑
a,b

(
D(hav0

, hbv0)−D(h
a
v1
, hbv1)

)2
(3.2)

Lsim =
∑
v0,v1

∑
a

D(hav0 , h
a
v1)

+ µ
∑
a6=b

max
(
0, 1−D(hav0 , h

b
v1)
) (3.3)
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View Random Lcpc Lcpc
sim Lcpc

sync Lcocon

RGB 46.7 63.7 66.0 62.7 67.8
Flow 65.3 69.8 71.4 69.2 72.5

Table 3.1: Impact of losses on performance of models when jointly trained with RGB and Flow. CoCon i.e.
Ltotal (67.8) comfortably improves performance over CPC i.e. Lcpc (63.7). Lx

y = Lx+λLy where λ = 10.0
for this experiment

Method Pretrain RGB Flow2

UCF HMDB UCF HMDB

Random 46.7 20.6 65.3 31.2
CPC K400 68.6 35.5 69.8 40.8

CoCon UCF 67.8 37.7 72.5 44.1
CoCon K400 72.1 46.5 71.8 44.2

Table 3.2: Impact of pre-training comparison. CoCon demonstrates a consistent improvement in both RGB
and Flow.

Note that Lsim entangles different modes together. An alternative would be defining such a loss indi-

vidually for each mode. However, diversity is inherently encouraged through Lcpc, and interactions between

modes have the side-effect of increasing their mutual information (MI), which leads to improved performance

[69, 80].

We combine the above losses to get our cooperative loss, Lcoop = Lsync + α · Lsim. We use α = 1.0

for our experiments and observe roughly similar performance for different values of α. The overall loss of

our model is given by Lcocon = Lcpc + λ · Lcoop. Lcpc encourages our model to learn good features for each

mode, while Lcoop nudges it to learn higher-level features using all modes while respecting the similarity

structure across them.

Method RGB Flow PoseHM SegMask
UCF HMDB UCF HMDB UCF HMDB UCF HMDB

Random 46.7 20.6 65.3 31.2 51.7 33.0 42.7 26.3
CPC 63.7 33.1 71.2 44.6 56.4 42.0 53.7 32.8

CoCon 71.0 39.0 74.5 45.4 58.7 42.6 55.8 34.0

Table 3.3: Impact of co-training on modes. CoCon is jointly trained with four modalities (RGB, Flow,
PoseHM, & SegMask).
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Action Class CoCon CPC

PlayCello PlaySitar, PlayTabla, PlayDhol N/A
Skiing Surfing, Skijet Surfing

HammerThrow BaseballPitch, ThrowDiscus, Shotput N/A
BrushTeeth ApplyLipstick, EyeMakeup, ShaveBeard ApplyLipstick

Table 3.4: Nearest consistent semantic classes. Individually trained modes (CPC) do not have consistent
neighbors across modes, leading to empty results (N/A) for ’PlayingCello’ and ’HammerThrow’. While
modes trained using CoCon show consistency across modes, leading to sensible relationships e.g. ’Ham-
merThrow’ related to other classes involving throwing.

# Views RGB Flow
UCF HMDB UCF HMDB

2 67.8 37.7 72.5 44.1
4 71.0 39.0 74.5 45.4

Table 3.5: Impact of performance on varying modes. A consistent improvement can be seen with more modes
despite the prevalent noise in PoseHM and SegMasks.

3.3 Experiments

The goal of our framework is to learn video representations which can be leveraged for video analysis tasks.

Therefore, we perform experiments validating the quality of our representations. We measure downstream

action classification to objectively measure model effectiveness and analyze impact of our designs through

controlled ablation studies. We also conduct qualitative experiments to gain deeper insights into our approach.

In this section, we briefly go over our experiment framework.

3.3.1 Overview

Datasets

Our approach is a self-supervised learning framework for any dataset with multiple modes. However, we

discuss its relevance to video action classification in our experiments. We focus on human action datasets i.e.

UCF101, HMDB51 and Kinetics400. UCF101 contains 13K videos spanning over 101 human action classes.

HMDB51 contains 7K video clips mostly from movies for 51 classes. Kinetics-400 (K400) is a large video

dataset with 306K video clips from 400 classes.

Views We utilize different modes in our experiments. For Kinetics-400, we learn encoders for RGB

and Optical Flow. We use Farneback flow (FF) [15] instead of the commonly used TVL1-Flow as it is

quicker to compute lowering our computation budget. Although FF leads to lower performance compared to

TVL1, the essence of our claims remain unaffected. For UCF101 and HMDB51, we learn encoders for RGB,

TVL1 Optical Flow, Pose Heatmaps (PoseHMs) and Human Segmentation Masks (SegMasks). A few visual
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samples for each mode are provided in 3.1. PoseHMs and SegMasks are generated using an off-the-shelf

detector [87] without any form of pre/post-processing.

Implementation Details

We choose a 3D-ResNet similar to [20, 24] as the encoder f(.). We choose N = 8 and K = 5 in our

experiments. We subsample the input by uniformly choosing one out of every 3 frames. Our predictive task

involves predicting the last three blocks using the first five blocks. We use standard data augmentations during

training whose details are provided in later sections. We train our models using Adam [39] optimizer with an

initial learning rate of 10−3, decreased upon loss plateauing. We use 4 GPUs with a batch size of 16 samples

per GPU. Multiple spatio-temporal samples ensure sufficient negative examples despite the small batch size

used for training.

Action Classification

We measure the effectiveness of our learned representations using the downstream task of action classifica-

tion. We follow the standard evaluation protocol of using self-supervised model weights as initialization for

supervised learning. The architecture is then fine-tuned end-to-end using class label supervision. We finally

report the fine-tuned accuracies on UCF101 and HMDB51. While fine-tuning, we use the learned composite

function F (.) in order to generate context representations for the video blocks. The context feature is further

passed through a spatial pooling layer followed by a fully-connected layer and a multi-way softmax for action

classification.

3.3.2 Quantitative Results

We analyze various aspects of CoCon through ablation studies, experiments on multiple datasets, controlled

variation of modes and comparison to comparable methods. We objectively evaluate model performance

using downstream classification accuracy as a proxy for learned representation quality. Pre-training is per-

formed on either UCF101 or Kinetics400. We propose two baselines for comparison. (1) Random - random

initialization of weights (2) CPC - self-supervised training utilizing only Lcpc; which is effectively individ-

ual training of modes. CPC serves as a critical baseline to measure the benefits of multi-modal training as

opposed to individual training.

Ablation Study

We have motivated the utility of our various loss components. We now perform experiments to quantify

the impact of each. The pre-training dataset used is the 1st split of UCF101, and downstream classifica-

tion accuracy is computed on the same. Table 3.1 summarizes the results of our experiment. As expected,

all cross-view approaches comfortably perform better than CPC; demonstrating the utility of multi-modal

training.
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Method Resolution Backbone # Views Pre-train UCF101 HMDB51
Random Initialization 128× 128 ResNet18 1 46.7 20.6
ImageNet [75] 224× 224 VGG-M-2048 1 ImageNet 73.0 40.5

Shuffle and Learn [56] 227× 227 CaffeNet 1 UCF-HMDB 50.2 18.1
OPN [44] 80× 80 VGG-M-2048 1 UCF-HMDB 59.8 23.8
DPC [20] 128× 128 ResNet18 1 UCF101 60.6 -
VGAN [84] N/A C3D 2 Flickr [84] 52.1 -
LT-Motion [52] N/A RNN [52] 2 NTU 53.0 -
Cross and Learn [69] 224× 224 CaffeNet 2 UCF101 58.7 27.2
Geometry [16] N/A CaffeNet 2 UCF101 55.1 23.3
CMC [80] 128× 128 CaffeNet 3 UCF101 59.7 26.1
CoCon - RGB 128× 128 ResNet18 4 UCF101 70.5 38.4
CoCon - Ensemble 128× 128 ResNet18 4 UCF101 82.4 52.0

3D-RotNet [35] 112× 112 ResNet18 1 Kinetics 62.9 33.7
DPC [20] 128× 128 ResNet18 1 Kinetics 68.2 34.5
CoCon - RGB 128× 128 ResNet18 2 Kinetics 71.6 46.0
CoCon - Ensemble 128× 128 ResNet18 2 Kinetics 78.1 52.0

ST-Puzzle [38] 224× 224 ResNet18 1 Kinetics 65.8 33.7
DPC [20] 224× 224 ResNet34 1 Kinetics 75.7 35.7
CoCon - RGB 224× 224 ResNet34 2 Kinetics 79.1 48.5
CoCon - Ensemble 224× 224 ResNet34 2 Kinetics 82.0 53.1

Table 3.6: Comparison of classification accuracies on UCF101 and HMDB51, averaged over all splits.

Using Lcpc
sync leads to no performance improvements, as only using Lsync leads to the model collapsing

by squashing all D scores to have similar values, thus necessitating Lsim to counter-balance this tendency.

Lcpc
sim leads to improved performance wrt Lcpc as it learns better features by effectively maximizing mutual

information between modes. CoCon i.e Lcocon achieves the same by also regularizing manifolds across

modes, leading to even better performance across all modes. The important comparison to observe is between

Lcpc
sim and Lcocon. As Lcpc

sim is the most similar baseline to other multi-modal approaches, e.g., CMC [80].

However, we argue this baseline is even stronger as it involves both single-view and multi-modal components

compared to [80], which only uses a contrastive multi-modal loss to learn representations.

Effect of Datasets

A critical benefit of self-supervised approaches is the ability to run on large unlabelled datasets. To simulate

such a setting, we perform pre-training using UCF101 or Kinetics400 1 without labels utilizing the 1st splits

of UCF101 and HMDB51 for evaluation. Table 3.2 confirms pre-training with a larger dataset leads to

better performance. It is also worth noting that CoCon pre-trained with UCF101 outperforms CPC trained

on Kinetics400 even though CoCon on UCF101 uses only around 10% data compared to Kinetics. Further

1 Optical Flow used for Kinetics400 is Farneback Flow; as opposed to TVL1 Flow for UCF101 and HMDB51. This difference in
pre-training and fine-tuning modalities leads to less than expected performance gains.
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#Views: 1 #Views: 4
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Figure 3.2: t-SNE visualization of RGB features from CPC (left) and CoCon (right) trained with 4 modes.
The color mapping for each category represents the relationships between action classes, e.g., Red: Instru-
ments; Yellow: Water Sports; Light-blue: Physical Acts; Blue: Makeup-Hygiene. More meaningful clusters
are formed using CoCon; signifying the ability of CoCon to align different yet semantically-related classes
without any additional supervision.

demonstrating the potential of utilizing multiple modes as opposed to training with larger and diverse datasets.

When comparing the Random baseline and CoCon pre-trained on Kinetics400, we observe higher perfor-

mance gains for RGB (+25.4%) compared to Optical-Flow (+6.9%). We argue this is due to higher variance

and complexity of RGB compared to Flow, allowing a randomly initialized network to perform relatively

better with Flow. While comparing our approach with CPC, we again observe higher gains in RGB (+4.1%)

compared to Flow (+2.7%). This can be explained by the potential capability of RGB to capture flow-like

features when learned jointly.

Effect of cooperative training

We compare benefits of cooperative training with varying modes. We look at co-training of RGB, Flow,

SegMasks and PoseHMs. Recall that these additional modes are generated using off-the-shelf models without

any additional post-processing. Even though they are somewhat redundant i.e. Flow, PoseHM, SegMasks are

actually derived from RGB Images; using them simultaneously still leads to a large performance increase. We

also note that although SegMasks and PoseHMs are sparse low-dimensional features, they still help improve

performance across all modes.

Table 3.3 summarizes downstream action recognition performance of each mode under different ap-

proaches. We see improved performance with increase in the number of modes used. Consistent gains
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Figure 3.3: Differences between class-wise accuracy for CoCon vs CPC. Only extreme classes are displayed.
Blue - Gains; Red - Loss

for modes such as Flow, SegMasks, PoseHM, which are not as expressive as RGB points towards extrac-

tion of higher-order features even from low dimensional inputs. We observe PoseHM and SegMask have

lower performance gains when evaluated on HMDB51. This can be attributed to the large degree of noise in

PoseHMs and SegMasks for HMDB51. HMDB is a challenging and diverse dataset, leading to poor predic-

tions from our off-the-shelf detector. In conclusion, the benefits of joint training are apparent as CoCon leads

to a performance improvement for all the modes involved.

Effect of additional modes

CoCon hinges on the assumption that multi-modal information helps in improving overall representation

quality. To verify our hypothesis, we study co-training with different number of modes. We consider two

scenarios, 1) Joint training of RGB and Flow streams, and 2) Joint training of RGB, Flow, SegMasks and

PoseHMs. Table 3.5 shows a consistent increase across modes when increasing the number of modes used

during training. We should note that both SegMasks and PoseHMs contain significant noise as the off-the-

shelf models incorrectly detects and misses humans in numerous videos. However, we see a consistent mutual

increase in performance for all the involved modes despite the prevalence of noise.

Comparison with comparable approaches

We summarize comparisons of CoCon with comparable state-of-the-art approaches in Table 3.6. CoCon-

Ensemble refers to an ensemble of models for all the involved modes. We observe a few major trends,
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(1) When pre-training on UCF101, using multiple modes allows us to outperform the nearest comparable

approach by around 10.4%. This demonstrates the potential of cooperatively utilizing multiple modes to

learn representations. (2) We see considerable gains while training on Kinetics400 as well, however, the

increase is smaller compared to UCF101. We argue the reasons are, a) we only utilize two modes for co-

training. b) the flow we utilize for Kinetics400 is Farneback Flow instead of TVL1 flow used for UCF101 and

HMDB51. (3) Our method comfortably outperforms recent multi-modal approaches consistently on UCF101

and HMDB51. (4) An interesting observation is that using multiple modes of a small dataset (UCF101)

performs better (71.0%) than pre-training on a large dataset, Kinetics400 (68.2%). This suggests that utilizing

different modes can be better than merely training on larger datasets.

Comparison with recent approaches

A few very recent approaches [3, 21, 22, 62] have tackled multi-modal self-supervised achieving impressive

performance. CoCon differs from them as it considers inter-instance relationships to aid learning in addition

to relationships between modes. Due to resource constraints, it was not possible to have a fair comparison

due to the significant difference in the amount of GPUs, number of epochs trained and the backbones used.

However, we hope our carefully constructed experiments given earlier provide deeper insights into CoCon’s

benefits even with lower resource requirements.

Figure 3.4: Soft Alignment of videos from UCF101 test split using CoCon pre-trained on UCF101. The
first pair of videos involves pull-ups; observe the periodicity captured in the heatmap. The second involves
high-jumps; notice that we are roughly able to align the running and jumping phases though they happen at
different times. Heatmaps (right) represent relative block similarities from different time-steps of the videos.
The color of the frame boxes describe the associated actions; matching colors broadly represent similar action
stages.



CHAPTER 3. COOPERATIVE CONTRASTIVE LEARNING 19

3.3.3 Qualitative Results

We motivate CoCon arguing about the benefits of preserving similarities across mode-specific spaces. We

observe respecting structure across modes results in emergence of higher-order semantics without additional

supervision e.g. sensible class relationships and good feature representations. Jointly training with modes

known to perform well for video action understanding allows us to learn good video representations, con-

sequently, imparting unexpected side effects such as action alignment across videos. We discuss various

experiments and results to support these claims.

t-SNE Visualization

We explore t-SNE visualizations of our learned representations on the 1st test split of UCF101 extracted

using F (.). For clarity, only 21 action classes are displayed. We loosely order the action classes according

to their relationships. Classes having similar colors are semantically similar. We can roughly observe the

following broad categories present in the mentioned classes: Playing Instruments, Water Sports, Physical

Sports, Physical Activities, Makeup-Hygiene. Results are displayed in Fig 5.3. Although we operate in a

self-supervised setting, CoCon is able to uncover deeper semantic features allowing us to uncover inter-class

relationships. We can see a much more concise and consistent clustering in CoCon compared to CPC.

Effect of action classes on performance

Figure 3.3 shows the classes which observe the least and highest performance improvements when co-trained

with multiple modes. We observe a loose pattern where action classes involving distinguishable physical

movements see larger improvements. We can argue this is because we use modes which are suitable for

physically intensive actions.

Inter-Class Relationships

In order to study consistency of structure across different modes, we look at relationships between classes by

inferring their similarities through our learned features. We compare cosine similarities across videos from

different classes and compute the most similar four classes for each action. We repeat the process for all

modes and look at the consistency of the results. We only display classes which are amongst the closest ones

across all modes. Table 3.4 summarizes our results. We see the detected nearest actions are semantically

related to the original actions. In the cases of PlayingCello, we encounter a cluster of categories involving

playing instruments. Similarly for BasketBall, we can see emergence of sports-based relationships even

though there is not any visual commonality between the categories. It’s worth noting that as these nearest

classes are consistent across different modes, our approach cannot cheat to generate them i.e. it cannot look

at ’background crowd’ or ’green field’ and infer that a video clip is related to sports. Since modes such as

Optical-Flow, SegMasks and KeypointHeatmap do not have such information and are very low-dimensional.
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Action Alignment

Even though we only use self-supervision, our embeddings are able to capture relevant semantics through our

multi-modal approach allowing loose alignment between videos. To compute this soft alignment, we divide

each video into 18 blocks and compute block-level features. We then utilize relative cosine similarities to

infer associations between the videos. Figure 3.4 highlights a few examples. Notice the periodicity implic-

itly present in some actions (e.g. pullups) captured through the heatmap allowing us to perform non-linear

alignment.

3.4 Conclusion

We propose a cooperative version of contrastive learning, called CoCon, for self-supervised video representa-

tion learning. By leveraging relationships across modes, we encourage our self-supervised learning objective

to be aligned with the underlying semantics. We demonstrate the effectiveness of our approach on the down-

stream task of action classification, and illustrate the semantic structure of our representation. We show

that additional input modes generated by off-the-shelf computer vision algorithms can lead to significant im-

provements, even though they are noisy and derived from an existing modality i.e. RGB. As these modes

are ’freely’ available, this shows the feasibility of utilizing multi-modal approaches on datasets which are

not traditionally considered multi-modal. We hope this enables the ability to leverage multi-modal learning

algorithms and observe performance gains even on single-view datasets.

3.5 Additional Details

3.5.1 Model Overview

We build our framework borrowing the learning framework present in [20] which learns video representations

through spatio-temporal contrastive losses. It should be noted that even though we use this particular self-

supervised backbone in our experiments, our approach is not restricted by the choice of the underlying self-

supervised task.

A video V is a sequence of T frames (not necessarily RGB images) with resolution H × W and C

channels, {i1, i2, . . . , iT }, where it ∈ RH×W×C . Assume T = N ∗ K, where N is the number of blocks

and K denotes the number of frames per block. We partition a video clip V into N disjoint blocks V =

{x1,x2, . . . ,xN}, where xj ∈ RK×H×W×C and a non-linear encoder f(.) transforms each input block xj
into its latent representation zj = f(xj).

An aggregation function, g(.) takes a sequence {z1, z2, . . . , zj} as input and generates a context repre-

sentation cj = g(z1, z2, . . . , zj). In our setup, zj ∈ RH′×W ′×D and cj ∈ RD. D represents the embedding

size andH ′, W ′ represent down-sampled resolutions as different regions in zj represent features for different
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spatial locations. We define z′j = Pool(zj) where z′j ∈ RD and c = F (V ) where F (.) = g(f(.)). In our

experiments, H ′ = 4,W ′ = 4, D = 256.

To learn effective representations, we create a prediction task involving predicting z of future blocks

similar to [20]. In the ideal scenario, the task should force our model to capture all the necessary contextual

semantics in ct and all frame level semantics in zt. We define φ(.) which takes as input ct and predicts the

latent state of the future frames. The formulation is given in Eq. (5.3).

z̃t+1 = φ(ct),

z̃t+1 = φ(g(z1, z2, . . . , zt)),

z̃t+2 = φ(g(z1, z2, . . . , zt, z̃t+1)),

(3.4)

where φ(.) takes ct as input and predicts the latent state of the future frames. We then utilize the predicted

z̃t+1 to compute c̃t+1. We can repeat this for as many steps as we want, in our experiments we restrict

ourselves to predict till 3 steps in to the future.

Note that we use the predicted z̃t+1 while predicting z̃t+2 to force the model to capture long range

semantics. We can repeat this for a varying number of steps, although the difficulty increases tremendously

as the number of steps increases as seen in [20]. In our experiments, we predict the next three blocks using

the first five blocks.

Figure 3.5: A diagram of the learning framework utilized. We look at features in a sequential manner while
simultaneously trying to predict representations for future states.
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3.5.2 Datasets

Kinetics400 contains 400 human action classes, with at least 400 real-world video clips for each action. Each

clip lasts around 10s and is taken from a different YouTube video. The actions are human focused and cover

a broad range of classes including human-object and human-human interactions. The large diversity and

variance in the dataset make it an extremely challenging dataset.

HMDB51 dataset contains around 6800 real-world video clips from 51 action classes. These action

classes cover a wide range of actions - facial actions, facial action with object manipulations, general body

movement, and general body movements with human interactions. This dataset is challenging as it contains

many poor quality video with significant camera motions and also the number of samples are not enough to

effectively train a deep network. We report classification accuracy for 51 classes across 3 splits provided by

the authors.

UCF101 dataset contains 13320 videos from 101 action classes that are divided into 5 categories - human-

object interaction, body-movement only, human-human interaction, playing musical instruments and sports.

Action classification in this datasets is challenging owing to variations in pose, camera motion, viewpoint and

spatio-temporal extent of an action.

3.5.3 Views

We simultaneously learn encoders for RGB and Optical Flow while training on Kinetics-400. Instead of using

the commonly used TVL1-Flow, we rely on Farneback flow which usually results in lower performance for

action classification, however is much faster to compute. For UCF101 and HMDB51, we simultaneously

learn encoders for RGB, TVL1 Optical Flow, Pose Heatmaps and Semantic Maps.

We give a brief overview of the views utilized and their generation.

• RGB Images, RGB - We directly use sequences of RGB frames present in videos

• Optical Flow, Flow - We use the popular TVL1 flow for UCF101 and HMDB51 and Farneback Flow

(FF) for Kinetics400. FF is known to perform worse than TVL1-Flow on visual recognition tasks,

however, it is quicker to compute. This view mismatch views leads to lesser gains when using Kinetics

pre-trained flow weights for UCF101 and HMDB51.

• Pose Keypoint Heatmaps, PoseHMs - We use an off-the-shelf keypoint detector [87] and extract

confidence heatmaps for each keypoint. Note that we perform no pre/post-processing on the results

and directly use this as input to our model. The input modality is inherently very noisy, however, we

still observe improved performance.

• Human Segmentation Masks, SegMasks - Similar to the above, we use an off-the-shelf semantic

segmentation network [87] and extract confidence scores for human segmentation. Similar to pose

keypoint heatmaps, this input modality is inherently very noisy.
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Fig. 3.6 shows examples of different views. Note the prevalence of noise in a few samples, specially

SegMasks. There are multiple other instances where PoseHMs are noisy as we’re unable to even localize the

actor accurately.

Figure 3.6: Examples for each view. From top to bottom - RGB, Flow, SegMasks and Poses.

3.5.4 Implementation Details

We choose to use a 3D-ResNet similar to [24] as the encoder f(.). Following [20] we only expand the

convolutional kernels present in the last two residual blocks to be 3D ones. We used 3D-ResNet18 for our

experiments, denoted as ResNet18. We use a weak aggregation function g(.) in order to learn a strong

encoder f(.). Specifically, we use a one-layer Convolutional Gated Recurrent Unit (ConvGRU) with kernel

size (1, 1) as g(.). The weights are shared amongst all spatial positions in the feature map. This design allows

the aggregation function to propagate features in the temporal axis. A dropout [27] with p = 0.1 is used

when computing the hidden state at each time step. A shallow two-layer perceptron is used as the predictive

function φ(.). Recall z′j = Pool(zj)wherez
′
j ∈ RD. We utilize stacked max pool layers as Pool(.).

To construct blocks to pass to the network, we uniformly choose one out of every 3 frames. We then group

these into 8 blocks containing 5 frames each. Since the videos we use are usually 30fps, each block roughly

covers 0.5 seconds worth of content. The predictive task we design involves predicting the last three blocks

using the first five. Therefore, we effectively predict the next 1.5 seconds based on the first 2.5 seconds.

We perform random cropping, random horizontal flipping, random greying, and color jittering to perform

data augmentation in the case of images. For optical flow, we only perform random cropping on the image. As
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discussed earlier, Keypoint Heatmaps and Segmentation Confidence Masks are modelled as images, therefore

we perform random cropping and horizontal flipping in their case. Note that random cropping and flipping is

applied for the entire block in a consistent way. Random greying and color jittering are applied in a frame-

wise manner to prevent the network from learning low-level features such as optical flow. Therefore, each

video block may contain both colored and grey-scale image with different contrast.

All individual view-specific models are trained independently using only Lcpc. After which we proceed

to train all view-specific models simultaneously using Lcocon. All models are trained end-to-end using Adam

[39] optimizer with an initial learning rate 10−3 and weight decay 10−5. Learning rate is decayed to 10−4

when validation loss plateaus. A batch size of 16 samples per GPU is used, and our experiments use 4 GPUs.

We train models on UCF101 for 100 epochs using Lcpc, after which they are collectively trained together

for 60 epochs using Lcocon. We repeat the same for Kinetics400 with reduced epochs. We train models on

Kinetics400 for 80 epochs using Lcpc and further for 40 epochs using Lcocon.

The learned representations are evaluated by their performance on the downstream task of action clas-

sification. We follow the evaluation practice from recent works and use the weights learned through our

self-supervised framework as initialization for supervised learning. The whole setup is then fine-tuned end-

to-end using class label supervision. We finally report the fine-tuned accuracies on UCF101 and HMDB51.

We use the learned composite function F (.) to generate context representations for video blocks. The context

feature is further passed through a spatial pooling layer followed by a fully-connected layer and a multi-way

softmax for action classification. We use dropout with p = 0.7 for classification. The models are fine-tuned

for 100 epochs with learning rate decreasing at different steps. During inference, video clips from the val-

idation set are densely sampled from an input video and cut into blocks with half-length overlapping. The

softmax probabilities are averaged to give the final classification result.

Additional Results

We motivate CoCon arguing about the benefits of preserving similarities across view-specific feature spaces.

We observe respecting structure across views results in emergence of higher-order semantics without addi-

tional supervision e.g. sensible class relationships and good feature representations. We go over different

results in the following sections.

3.5.5 t-SNE Visualization

We explore t-SNE visualizations of our learned representations on the 1st test split of UCF101 extracted

using F (.). Our model is trained on the corresponding train split to ensure we’re testing out of sample

quality. For clarity, only 21 action classes are displayed. We loosely order the action classes according to

their relationships. Classes having similar colors are semantically similar. Results are displayed in Fig 3.7.

Even though we operate in a self-supervised setting, our approach is able to uncover deeper semantic features

allowing us to uncover inter-class relationships. We can see a much more concise and consistent clustering
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in CoCon compared to CPC. We also observe the distinct improvement in the compactness of the clusters as

we increase the number of views.

#Views: 1 #Views: 2 #Views: 4
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Figure 3.7: Emergence of relationships between different actions using CoCon with varying number of views.
Note that CoCon becomes the same as CPC when #views = 1

3.5.6 Inter-Class Relationships

In order to study the manifold consistency across different views, we look at relationships between classes

by inferring their similarities through the learned features. We compare cosine similarities across video

clips from different classes. We then compute the most similar five classes for each action. We repeat the

process for all views and look at the consistency of the results. Ideally, semantically similar classes should

be consistent across all views, assuming the views reasonably capture the essence of the task we’re interested

in.

We observe that CoCon leads to much higher consistency across different views. Specifically, we see 41

classes which have at least four out of five top-classes consistent in all views; as opposed to 10 classes in

CPC. Similar patterns are seen when we consider other thresholds. In order to confirm that the nearest classes

are actually sensible, we mention the most-similar classes for a few action classes.

We can see that the nearest actions generated are semantically related to the original actions. In the

cases of PlayingCello, we encounter a cluster of categories involving playing instruments. Similarly for

BasketBall, we can see emergence of sports-based relationships even though there is no visual commonality

between categories. We also see a few seemingly unrelated classes as well, e.g., BoxingPunchingBag and

YoYo; SalsaSpin and WalkingWithDog. A deeper inspection into the samples is required to comment whether

this truly makes sense. It is worth noting that as these nearest action classes are mostly consistent across

different views, our approach cannot cheat to generate them i.e. it cannot look at ’background crowd’ or

’green field’ and infer that the video clip is related to sports. Since views such as Optical-Flow, SegMasks

and KeypointHeatmap do not have such information and are much low-dimensional.
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Action Class
Nearest Classes

CoCon CPC

skiing surfing, skijet surfing
playingcello playingsitar, playingtabla, playingdhol N/A
jumpingjack jumprope, pullups, bodyweightsquats, cleanandjerk N/A
basketball baseballpitch, cricketshot, fieldhockey, cricketbowling N/A

hammerthrow baseballpitch, throwdiscus, shotput N/A
wallpushups writingonboard, bodyweightsquats N/A
brushingteeth applylipstick, applyeyemakeup, shavingbeard, haircut applylipstick

Table 3.7: Closest semantic classes provided by different models. CPC has very few consistent nearest
classes across views. While views trained using CoCon show consistent results across views, leading to
sensible inter-class relationships

3.5.7 Action Alignment

An interesting side-effect of improved representations for actions is the possibility of performing loose ac-

tion alignment. Even though we only use self-supervision, CoCon embeddings are able to capture relevant

semantics through our multi-view approach allowing loose alignment between videos. To compute this soft

alignment, we divide each video into 18 blocks and compute block-level features z′. We then utilize relative

cosine similarities to infer associations between the videos. We smoothen the heatmap in order to make it vi-

sually appealing. Figure 3.4 shows alignment between different videos. Figure 3.8 highlights a few examples

when we perform alignment between same videos. Notice the periodicity implicitly present in these actions

captured through the heatmap.

3.5.8 Cosine similarity

This section highlights the ability of representation generated through CoCon to capture meaningful seman-

tics going beyond low-level features. We look at cosine similarity distributions of video representation from

UCF101. We extract one context representation for each video and pool it into a vector. We then compute

the cosine similarity for each pair of video features across the unseen UCF101 test set. The cosine distance

is summarized by a histogram, where the ’blue’ histogram represents the score distribution for positives i.e.

videos belonging to the same class; and the ’orange’ one shows the distribution for negatives i.e. videos from

different classes.

3.5.9 Nearest Neighbors

We utilize CoCon to perform video retrieval for different query videos. Note that CoCon is able to look past

purely visual background features and focus on actions even though it only used RGB inputs. For example,

we see that we are able to retrieve close neighbors for BenchPress, even though it is very visually different

with varying poses. For the IceDancing sample, even though it incorrectly considers onbe video where the

person is running, we can still see similarities between the underlying actions in the videos. Similar results
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Figure 3.8: Soft Alignment of actions between the same video instances. The heat-map represents the relative similari-
ties between blocks at various timesteps. Notice periodic patterns in the actions.

can be seen in other examples as well. This hints towards the fact that CoCon representation are able to

capture action semantics even while using RGB views.
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(a) Generated by CoCon (b) Generated by CPC

Figure 3.9: Distributions of cosine-similarity scores between representations of videos from the same (blue)
and other classes (red).
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Figure 3.10: Nearest neighbors computed using RGB representations. Query video is highlighted on the left
with Aqua Blue.



Chapter 4

Home Action Genome

4.1 Introduction

Action understanding in videos is a critical task with various use-cases and real-world applications, from

robotics [47, 66] and human-computer interaction [68] to healthcare [23, 50] and elderly behavior monitoring

[30, 51]. Despite the recent success of deep learning methods for image classification, complex and holistic

action or event understanding remains an elusive task.

There are several challenges associated with the task of action understanding. The inherent variability in

executing complex activities poses one of the most critical difficulties in building action understating models.

To understand these challenges, it is essential to understand what actions are composed of. As opposed to

bounding boxes in the object detection task, actions are composed of various parts spanned in space and time.

For instance, the action of “laundry” involves multiple entities, e.g., humans, objects, and their relationships,

and is composed of a number of atomic actions. Such partonomy of actions [5, 32, 89] both in space and

time defines a hierarchical structure. Furthermore, to capture the variability in executing complex activities,

understanding each part (e.g., body limbs, objects, or atomic actions) becomes crucial. Since actions happen

in the 3D world, a holistic understanding of the world requires capturing the subtle movements or parts using

multiple modalities (e.g., RGB and audio) and from multiple viewpoints.

Each of these challenges has previously been separately investigated using different datasets and ad-

vanced methods. For instance, numerous datasets were put together for generic action recognition and spatio-

temporal localization in YouTube or broadcasting third-person videos, such as Kinetics [6], Charades [72],

ActivityNet [14], UCF101 [76]. Other datasets such as EPIC Kitchens [10] were used for ego-centric action

recognition. Action Genome [32] focused on using scene information in action recognition, while others

[53] focused on hierarchical action modeling from events to low-level atomic actions. Several studies tar-

get learning from long instructional videos and release datasets [8, 55, 79, 91] for the same, exploring the

partonomy of actions in long sequences. Others also focused on observing and recognizing actions from

multiple views, such as LEMMA [34] and HumanEva [71]. In parallel, there have been numerous recent
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Figure 4.1: HOMAGE annotation pipeline: For every action, we uniformly sample 3 or 5 frames across
the action and annotate the bounding boxes of the person performing the action along with the objects they
interact with. We also annotate the pairwise relationships between the subject and the objects.
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advances in contrastive and cooperative learning [9, 22] applied to multi-modal and multi-view datasets as a

self-supervised pre-training strategy to improve downstream recognition results. Despite all these advances,

action understanding and generalizability of such models remains a challenging problem due to complexities

brought by their complicated nature and numerous object interactions. Multi-modal approaches [69, 74, 80]

have shown superior performance in tackling such issues. However, there is still a need for a benchmark

that unifies all these challenges and tasks. In this paper, we release a dataset along with a novel method for

hierarchical action recognition to tackle these problems.

We introduce a new benchmark for action recognition, Home Action Genome (HOMAGE), that includes

multi-modal synchronized videos from multiple viewpoints along with hierarchical action and atomic-action

labels. Actions in homes are challenging as we deal with long-term actions, interactions with objects, and

frequent occlusions. Having multiple views and sensors to handle occlusions and scene graph information

to capture object interaction allows us to tackle these complexities. In addition, synchronous videos provide

implicit alignment that facilitates multi-modal training. Additionally, access to sensor information enables fu-

ture research in privacy-aware recognition where we avoid audio-visual modalities. HOMAGE also provides

temporal annotations of high-level activity and low-level atomic action supplemented with spatio-temporal

scene-graphs. Annotations regarding interaction of objects within actions and atomic actions within high-

level actions enable research in explainable video understanding, early action prediction, and long-range

action recognition.

As we will see in a later chapter, for this new benchmark, we introduce a novel method to perform si-

multaneous co-training with multiple modalities (RGB, audio, and annotations of scene composition) and

viewpoints that enable the learning of rich video representations. Training involves a co-training strategy that

leverages information from all views and modalities to build the representation space. During inference, we

set up different experiments and observe improved action recognition performance even when only a sin-

gle modality is used, which suggests training on HOMAGE improves performance with no need for other

modalities during inference. In this paper, we explore audio-visual data (of interest to the vision commu-

nity). Future sensor-fusion work can further exploit other modalities we release (e.g., for privacy-preserving

studies).

HOMAGE aims to unify various aspects and challenges of action recognition, specifically targeting multi-

modal and compositional perception for home actions. Moreover, the presence of a large number of modal-

ities in our dataset encourages research in areas such as privacy-aware recognition and sensor-fusion. To

summarize, our contributions are as follows:

(1) We introduce a new dataset, Home Action Genome (HOMAGE) with multiple views and modalities

densely annotated with scene graphs and hierarchical activity labels (overall activity and atomic actions).

(2) We propose a novel learning framework (CCAU) that leverages multiple modalities and hierarchical action

labels and improves the performance of the baselines trained on each individual modality. We demonstrate

the benefits of our approach with an improvement of +6.4% using only ego-view during inference.

This chapter discusses the first contribution regarding the dataset, how it is collected, its specifics and its
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potential applications. We focus on the second contribution in the next chapter.

4.2 Related Work

4.2.1 Action Recognition in Videos.

Action recognition has continuously been an important direction for the computer vision research community.

The success of 2D convolutions in image classification allowed frame-level action recognition to become a

viable approach. Subsequently, two-stream networks for action recognition [74] have led to many competitive

approaches, which demonstrates using multiple modalities such as optical flow helps improve performance

considerably. Their work motivated other approaches that model temporal motion features together with spa-

tial image features from videos. [81, 82] demonstrated that replacing 2D convolutions with 3D convolutions

leads to further performance improvements. Recent approaches such as I3D [7] inflate a 2D convolutional

network into 3D to benefit from the use of pre-trained models. 3D-ResNet [24] adds residual connections

building a very deep 3D network leading to improved performance.

4.2.2 Related Datasets

MSR-Action3D [45] provides depth map sequences containing 20 actions of interactions with game consoles.

[48, 58, 70, 78] use the Microsoft Kinect sensor to collect multi-modal action data with RGB and depth map

sequences. NTU RGB+D [70] consists of RGB, depth map, infrared frames with 3D human joints annotations

with 40 human subjects, and 80 distinct camera viewpoints. However, for action labels, each video in these

datasets has a single video-level label and thus tough to use for action localization applications.

Other datasets [14, 32, 34, 40, 48] provide annotations for temporally localized actions. MMAct [40] is

a large-scale action recognition benchmark multimodal data including RGB videos, keypoints, acceleration,

gyroscope, and orientation. It provides an ego-view and 4 third-person views and temporally localized ac-

tions. However, MMAct does not provide bounding box annotations for spatial localization and relationships

between objects. LEMMA [34] is a recent multi-view and multi-agent human activity recognition dataset,

providing bounding box annotations on third-person views and compositional action labels annotated with

predefined action templates and verbs/nouns. However, they do not provide bounding boxes of objects the

subjects (human) interact with. Action Genome [32] is built upon the videos from Charades [73], with the

additional annotation of spatio-temporal scene graph labels. However, it only provides videos from a single

camera view. HOMAGE aims to provide 1) multiple modalities to promote multi-modal video representation

learning, 2) high-level activity labels and temporally localized atomic action labels, and 3) scene graphs that

provide spatial localization cues for both the subject and the object and their relationship.
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4.2.3 Multi-Modal Learning.

Multiple modalities of videos are rich sources of information for both supervised [74] and self-supervised

learning [69, 80, 84]. [41, 80] introduce a contrastive learning framework to maximize the mutual information

between modalities in a self-supervised manner. The method achieves state-of-the-art results on unsupervised

learning benchmarks while being modality-agnostic and scalable to any number of modalities. Two stream

networks for action recognition [74] have led to many competitive approaches, which demonstrate using

even derivable modalities such as optical flow helps improve performance considerably. There have been

approaches [52, 69, 80, 84] utilizing diverse modalities, sometimes derivable from one other, to learn better

representations.

4.3 Home Action Genome (HOMAGE)

Home Action Genome (HOMAGE) is a new benchmark for action recognition that includes multi-modal

synchronized video data from multiple viewpoints (ego-view, third-person) with both high-level activity and

low-level action definitions. HOMAGE focuses on actions in residential settings due to the challenges in-

volved i.e. complexity and long duration of actions, object interactions, and frequent occlusions. HOMAGE

provides multiple views and sensors to tackle these challenges. We describe the design, data collection, and

data annotation process of the HOMAGE dataset in this section.

view1(Ego-view) view2 view3 view4 view5

eat dinner

pack 

suitcase

blow-dry 

hair

handwash

dishes

Figure 4.2: Multiple Views of Home Action Genome (HOMAGE) Dataset. Each sequence has one ego-view
video as well as at least one or more synchronized third person views.
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Dataset Seq hrs Modalities Views HL HL Classes TL TL Classes TL Ins SG
RGBD-HuDaAct [58] 1.19K 46 2 1 X 12 - - - -
UCF101 [76] 13K 27 1 1 X 101 - - - -
ActivityNet [14] 28K 648 1 1 X 200 - - - -
Kinetics-700 [6] 650K 1.79K 1 1 X 700 - - - -
AVA [17] 430 108 1 1 - - X 80 1.58M -
PKU-MMD [48] 1.08K 50 3 3 - - X 51 20K -
EPIC-Kitchens [10] - 55 1 1 - - X 125 39.6K -
MMAct [40] 36K - 6 5 - - X 37 36.8K -
Action Genome [32] 10K 82 1 1 - - X 157 66.5K X
Breakfast [42] - 77 1 1 X 10 X 48 - -
LEMMA [34] 324 10.1 2 4 X 151 X 863 11.8K -
Ours 1.75K 25.4 12 2∼5 X 75 X 453 24.6K X

Table 4.1: Comparison between related datasets and HOMAGE. (Seq: number of synchronized sequences,
Modalities: sensor modalities not including annotation data or derived data like optical flow, Views: number
of synchronized viewpoints for a given sample, HL: high-level activity label (often assigned one per video),
TL: temporally localized atomic action label, SG: scene graph). HOMAGE provides rich multi-modal action
data, including dense annotations such as scene graphs, along with hierarchical action labels.

Sensor Sensor information
Model no. rate

Video OmniVision OV5647 30fps
I2S Digital Microphones SPH0645LM4H 48KHz

GridEYE Thermal Imager AMG8833 10Hz
Human Presence (PIR) AK9753AE 2Hz
Ambient Light Intensity TSL2591 2Hz

Ambient Color ISL29125 10Hz
CO2/Humidity/Pressure/Temp. BME680 5Hz

Magnetometer MLX90393 10 Hz

Table 4.2: List of sensors in our multi-modal sensor

4.3.1 Activities and Scenarios.

Our goal is to build an activity recognition dataset that depicts behaviors observed in living spaces. To

cover daily activities, we employed the activity taxonomy in the American Time Use Survey (ATUS) [19].

The ATUS taxonomy organizes activities according to two key dimensions: 1) social interactions and 2)

the locations of the activities. The ATUS coding lexicon contains a large variety of daily human activities

organized under 18 top-level categories such as Personal Care, Work-Related, Education, and Household

activities.

Each participant was asked to perform tasks according to the instructions assigned. To make sure the be-

haviors are as natural as possible, we did not specify detailed procedures and time limits within the activities,

and let the individual participants perform the activity freely.
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4.3.2 Data Collection.

We recorded 27 participants in kitchens, bathrooms, bedrooms, living rooms, and laundry rooms in two

different houses. We used 12 sensor types: cameras (RGB), infrared (IR), microphone, RGB light, light,

acceleration, gyro, human presence, magnet, air pressure, humidity, temperature. We refer to the set of data

collected from a given activity with different modalities as one synchronized action sequence. Sensors were

attached to several locations in the room for third-person views and to the participants’ heads for ego-view.

On average, there are more than 3 views per action sequence. We synchronized the sensor recordings of all

views giving us synced videos which allowed for ease of use without requiring any additional post-processing.

We collect human action data from different viewpoints using our multimodal sensor kits. We provide

additional details in Table ??. Specifically, we synchronize the data from different modalities by using the

following scheme. (1) The participants were instructed to start the activity displayed on the screen after they

heard the start tone. (2) The content of the participants was specified by activity unit (e.g. make bed). We

do not specify a detailed sequence of atomic actions. (3) We sounded the end tone when the participant’s

activity is finished. We synchronized the data of multiple sensor-kits using the signal of start/end tone.

It is worth noting that in order to measure natural activities in a situation where we are in control of the

collecting location and the objects, we did not give instructions to the actors as much as possible. We do not

provide any sequence of actions or objects to touch. Furthermore, to match the activity labels like “make

bed”, the activity instructions were presented in text by display, and the actors did what they could imagine

with the activity.

4.3.3 Ground-truth Annotation.

Home Action Genome is a dataset with (1) video-level activity labels, (2) temporally localized atomic activity

labels, and (3) spatio-temporal scene-graph labels. Figure 4.1 visualizes our annotation pipeline. For the

atomic actions, we annotated all atomic actions performed during the activities. Note that while each video

can only have a single activity label, a given frame can be assigned with multiple atomic action labels when

atomic actions overlap with each other. For the action graph, we annotated the person performing the action

and the objects they interact with on videos from third-person views. We uniformly sampled 3 or 5 to

annotate scene graphs across the range of each atomic action interval (3 for intervals less than 3 seconds and

5 otherwise). This action-oriented dynamic sampling provides more labels where more actions occur which

is very valuable for describing complex primitive actions. [33] also shows this sampling scheme performs

remarkably well.

4.3.4 Dataset Statistics.

We annotated 75 activities and 453 atomic actions in 1,752 synchronized sequences and 5,700 videos in total.

We split the dataset into 1,388 train sequences and two test splits containing 198 and 166 sequences each.

Each sequence has a high-level activity category. We annotated atomic actions in each of these videos by
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Figure 4.5: The co-occurrence statistics for objects and relationships in Home Action Genome.
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Figure 4.6: Distribution of duration of atomic actions.

providing the start and end frames and the category of the atomic action. There are 20,039 training, 2,062,

and 2,468 atomic action sequences in the three splits mentioned above respectively. For scene graphs, we

annotate one third-person view video in each synchronized sequence by providing bounding boxes of the

subject and the object along with the relationship between them. There are 86 object classes (excluding

“person”), and 29 relationship classes in the dataset. Overall, there are annotations of 497,534 bounding

boxes and 583,481 relationships. .

The duration of atomic actions in HOMAGE is often short in time: there are about 60% of the atomic

actions under 2 seconds and 80% under 5 seconds. For scene graphs, some of the most common objects are

“countertop,” “clothes,” and “table”; and the most common relationships include “in front of,” “looking at,”

and “holding.” More details on the statistics are available in the supplement.

For the spatio-temporal scene graph, Figure 4.3 shows the most frequent object classes and Figure 4.4

shows the most frequent object relationships. Figure 4.5 shows the joint distribution of object classes and

relationships. Figure 4.6 shows the distribution of the durations of atomic actions. To encompass activities

in the living space, the types of activities in this dataset were determined by referring to the American Time

Use Survey (ATUS), which is a survey of time at home allowing researchers to look at how much time

people spend doing different activities. As there are several existing references defining atomic action for

daily activities, we borrow definitions from datasets such as Charades [72], EPIC-KITCHEN [10] and Action

Genome [32].
1We here refer to the “task classes” in [34]



CHAPTER 4. HOME ACTION GENOME 40

Figure 4.7: Multi-modal sensor kit used in data collection.

4.3.5 Relevance of Modalities.

In this paper, we only study the effect of modalities of interest to the vision community; however, HOMAGE

provides rich sensor information which could be useful for privacy-aware recognition. Modalities such as

angular velocity, acceleration, and geomagnetic sensors can be used to extract motion information in ego-

view, and environmental sensors, e.g., temperature and humidity can capture changes in the scene before and

after an activity. Thermal sensors can extract people or heat sources (e.g., extracting heat sources can be

useful for recognition in places such as kitchens), and human presence and light sensors can determine the

presence of people without using visual cues. Although not explored in detail in this paper, future sensor-

fusion work can exploit these other modalities as well.

Sensors and Modalities

We build multi-modal sensor kits for data collection as shown in Figure 4.7. This kit assists the creation of

the multi-modal dataset by dramatically simplifying the data collection process through simple recording and

timing synchronization. The data from all viewpoints are collected by these sensor-kits. Figure 4.8 shows the

photo of the multi-modal sensor mounted on the head of a subject participant.

The audio and video data from the sensor is saved to a video file, and the sensor data is saved in the same

file as additional tracks. By using lossless codecs like the Free Lossless Audio Codec (FLAC) or WavPack,

we can save the sensor data with high fidelity. Both codecs support multi-channel audio in 8-32 bit integer

format at frequencies as low as 1Hz. Sensor data is acquired over I2C with constant timing adjustments to

maintain synchronization with audio and video.

HOMAGE contains 12 modalities with multiple viewpoints. Specifically, the infrared data is obtained by

the Grid-EYE 8x8 pixel infrared array sensor. The RGB light data is obtained by a photodiode array sensor

that provides an RGB spectral response with IR blocking filter. The sensor kit also includes an ambient light
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Figure 4.8: The sensor, mounted on the participant’s head.

sensor that combines a broadband photodiode and an infrared-responding photodiode on a single CMOS-

integrated circuit to provide ambient light data. The human presence sensor is a 4-channel nondispersive

infrared (NDIR) sensor. The magnetic field data is acquired from a magnetometer in the sensor kit.

Data Synchronization

When storing video, audio, and sensor data together, each data stream is stored in a container by multiplexing

the streams. We use H264 for the video stream, and FLAC (Free Lossless Audio Codec) for audio and sensor

data.

To synchronize the sensor data, A 60Hz, fixed-length time-division multiplexing scheduler is used to

query the sensors over the inter-integrated circuit (I2C) bus. The scheduler monitors the drift between ex-

pected and actual query times and adjusts its timing on the fly to achieve sub-millisecond accuracy on average.

Sensor data are timestamped and passed to the main thread and encoded into its respective track immediately

to guarantee synchronization.
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Figure 4.9: The flow chart of data collection.



Chapter 5

Cooperative Compositional
Understanding

5.1 Introduction

In the previous section, we introduce a new benchmark for action recognition, Home Action Genome (HOMAGE),

that includes multi-modal synchronized videos from multiple viewpoints along with hierarchical action and

atomic-action labels. Actions in homes are challenging as we deal with long-term actions, interactions with

objects, and frequent occlusions. Having multiple views and sensors to handle occlusions and scene graph in-

formation to capture object interaction allows us to tackle these complexities. In addition, synchronous videos

provide implicit alignment that facilitates multi-modal training. Additionally, access to sensor information

enables future research in privacy-aware recognition where we avoid audio-visual modalities. HOMAGE also

provides temporal annotations of high-level activity and low-level atomic action supplemented with spatio-

temporal scene-graphs. Annotations regarding interaction of objects within actions and atomic actions within

high-level actions enable research in explainable video understanding, early action prediction, and long-range

action recognition.

For this new benchmark, we introduce a novel method to perform simultaneous co-training with multiple

modalities (RGB, audio, and annotations of scene composition) and viewpoints that enable the learning of

rich video representations. Training involves a co-training strategy that leverages information from all views

and modalities to build the representation space. During inference, we set up different experiments and

observe improved action recognition performance even when only a single modality is used, which suggests

training on HOMAGE improves performance with no need for other modalities during inference. In this

paper, we explore audio-visual data (of interest to the vision community). Future sensor-fusion work can

further exploit other modalities we release (e.g., for privacy-preserving studies).

43
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Figure 5.1: Given an activity instance (e.g., ‘do laundry’) and corresponding multiple views, we compute fea-
tures using modality-specific deep encoders (f modules). Different modalities may capture different semantic
information regarding the action. Cooperatively training all modalities together allows us to see improved
performance. We utilize training using both video-level and atomic action labels to allow both the videos and
atomic actions to benefit from the compositional interactions between the two. As discussed in the results,
we see significantly improved performance when using the above components together.
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HOMAGE aims to unify various aspects and challenges of action recognition, specifically targeting multi-

modal and compositional perception for home actions. Moreover, the presence of a large number of modal-

ities in our dataset encourages research in areas such as privacy-aware recognition and sensor-fusion. We

discussed our contributions related to our dataset in the last section. In this section, we propose a novel

learning framework (CCAU) that leverages multiple modalities and hierarchical action labels and improves

the performance of the baselines trained on each individual modality. We demonstrate the benefits of our

approach with an improvement of +6.4% using only ego-view during inference.

5.2 Cooperative Compositional Action Understanding

We discuss the benefits of HOMAGE and propose our approach Cooperative Compositional Action Un-

derstanding (CCAU) allowing us to exploit the rich annotations present in the dataset for improved action

understanding. We discuss how CCAU employs simultaneous cooperative training with multiple modalities

to improve the model’s understanding of actions and the associated atomic-actions. We start by discussing a

few preliminaries and proceed to discuss different components of our model. Note that “modalities” refer to

both different camera views, as well as, modes such as images, audio, and scene graphs.

5.2.1 Preliminaries

A video V is a sequence of T frames with resolution H × W and C channels, {i1, i2, . . . , iT }, where

it ∈ RH×W×C . Assume T = N ∗ K, where N is the number of blocks and K denotes the number

of frames per block. We partition a video clip V into N disjoint blocks V = {x1,x2, . . . ,xN}, where

xj ∈ RK×H×W×C and a deep encoder f(·) transforms each input block xj into its latent representation

zj = f(xj). An aggregation function, g(·) takes a sequence {z1, z2, . . . , zj} as input and generates a con-

text representation cj = g(z1, z2, . . . , zj). In our setup, zj ∈ RH′×W ′×D and cj ∈ RD. D represents

the embedding size and H ′, W ′ represent down-sampled resolutions as different regions in zj represent fea-

tures for different spatial locations. We define c = F (V ), where F (·) = g(f(·)). In our experiments,

H ′ = 4,W ′ = 4, D = 256. The computed representations are then utilized in order to perform per-block

classification to generate the necessary predictions, e.g., activity label or atomic-action label. For multiple

modalities, we define cm = Fm(Vm), where Vm, cm and Fm represent the video input, context feature and

composite encoder for modality m, respectively.

RGB Videos with Multiple Viewpoints.

An interesting aspect of HOMAGE is the presence of multiple viewpoints, specifically, a single ego-centric

viewpoint and numerous third-person views. For simplicity, we treat these multiple viewpoints as two sep-

arate modalities, i.e., ego-view and third-person view. Each of these modalities has a dedicated encoder to

generate clip-level features.
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Audio.

Along with having multiple camera viewpoints, we also have associated audio clips for each viewpoint. For

simplicity, we only use the audio associated with the ego-centric view. For each audio clip, we generate the

associated log-mel spectrogram [1] and treat it as an image input. Following numerous other works [2, 41],

we utilize a VGG19 backbone to generate a representation for the passed-in spectrogram.

Scene Graph.

A scene graph in a given frame G contains a set of objects O = {o1, o2, ...} and a set of relationships

R = {r1, r2, ...}. Each object oj contains an object ID, bounding box coordinates of the object, and object

category. Each relationship rj contains the object IDs for both the subject and the object of the relationship,

as well as the category of the relationship.

5.2.2 Multi-Modal Cooperative Learning

As discussed earlier, we define cm = Fm(Vm), where Vm, cm and Fm represent the input, context feature,

and composite encoder for modality m, respectively. We simultaneously train encoders for each modality

while ensuring that the views improve with cooperation. Such a training regime allows us to observe improved

performance during inference even when using a single modality.

Intuitively, we expect different modalities to impart complementary information to other modalities dur-

ing training. This can be similar to existing approaches such as student-teacher frameworks or knowledge

distillation [26, 40]. However, as we demonstrate in the experiments section, CCAU manages to learn better

representations. We argue this is because the unidirectional formulation of student/teacher does not suit such

setups as different modalities serve as a collective cohort of students as opposed to one of them being signif-

icantly dominant compared to others. CCAU utilizes contrastive multi-modal losses to promote cooperation

between the learners.

Noise Contrastive Estimation (NCE) [18, 57, 60] constructs a binary classification task where a classifier

is fed with real and noisy samples with the training objective to distinguish them. We utilize a simple task

of performing alignment between different modes m,m′. The task becomes choosing the correct in-sync

instance amongst multiple noisy instances. Similar to [80], we use an NCE loss over our feature embeddings

c described in Eq. (5.1). cmi represents the feature embedding for themth modality’s ith temporal block. This

effectively becomes a cross-entropy loss distinguishing one positive pair from all the negative pairs present

in a video. In a batch setting with multiple video clips, it is possible to have more inter-clip negative pairs.

The objective function for a single pair of modalities will hence be:

Lm,m′

align = −
∑
i

(
log

exp(cmi · cm
′

i )∑
j exp(cmi · cm

′
j )

)
. (5.1)
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To extend this to multiple views, we utilize the same objective for all pairs and simultaneously optimize:

Lalign =
∑
m,m′

Lm,m′

align .

Self-supervised attention [61] has been shown to be useful to auto-learn associations between different

modalities. We model attention by predicting importance weights over the grid. We predict H ′ ×W ′ values

αi,j representing weights of each feature corresponding to spatial location (i, j). Given feature c of shape

D×H ′×W ′, we extract cagg from it as given in Eq. (5.2). Where τ refers to the temperature. Further details

are provided in the appendix.

cagg =
∑
i,j

pi,j · ci,j , pi,j =
exp(αi,j / τ)∑
a,b exp(αa,b / τ)

(5.2)

5.2.3 Compositional Action Recognition

In addition to the multi-modal nature of HOMAGE, another one of its differentiating factors is having fine-

grained atomic-action labels along with video-level action labels. The compositional nature of atomic-actions

is useful in determining both the overall activity as well as learning relationships between atomic-actions and

high-level actions.

We leverage the compositionality of atomic-actions and activities in CCAU by simultaneously utilizing

both activity and atomic action level labels in our learning task. The intuition being our model will be able to

learn the composition and relationships between atomic-actions and activities improving its understanding.

We utilize the contextual features c in order to predict class labels for both video and atomic-action classes.

The video action prediction task is a standard one-hot classification task, while we formulate the atomic-

action prediction task as multi-target classification. We represent their corresponding losses as Lvideo = Lv

and Latomic = La. The overall compositional loss is represented by Lcomposition = Lc.

We explore two variants to define Lc. The first involves manually chosen hyper-parameters modulating

each component, i.e., Lc = Lv + λLa. The second automatically learns the appropriate multi-task weights

[37]. The numbers reported in the paper represent use the first approach with λ = 10. For details refer to the

appendix.

5.2.4 Self-Supervised Pre-Training

Our base backbone remains similar to the one we discuss in the main paper and the overall approach is

inspired by [20]. To summarize, an aggregation function, g(·) takes a sequence {z1, z2, . . . , zj} as input and

generates a context representation cj = g(z1, z2, . . . , zj). In our setup, zj ∈ RH′×W ′×D and cj ∈ RD.

D represents the embedding size and H ′, W ′ represent down-sampled resolutions as different regions in zj
represent features for different spatial locations. We define z′j = Pool(zj) where z′j ∈ RD and c = F (V )

where F (·) = g(f(·)). In our experiments, H ′ = 4,W ′ = 4, D = 256.
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To learn effective representations, we create a prediction task involving predicting z of future blocks

similar to [20]. In the ideal scenario, the task should force our model to capture all the necessary contextual

semantics in ct and all frame-level semantics in zt. We define φ(·) which takes as input ct and predicts the

latent state of the future frames. The formulation is given in Eq. (5.3). Fig. 3.5 provides a compact visual

representation of the learning framework.

z̃t+1 = φ(ct),

z̃t+1 = φ(g(z1, z2, . . . , zt)),

z̃t+2 = φ(g(z1, z2, . . . , zt, z̃t+1)),

(5.3)

where φ(·) takes ct as input and predicts the latent state of the future frames. We then utilize the predicted

z̃t+1 to compute c̃t+1. We can repeat this for as many steps as we want, in our experiments we restrict

ourselves to predict till 3 steps in to the future.

Note that we use the predicted z̃t+1 while predicting z̃t+2 to force the model to capture long-range se-

mantics. We can repeat this for a varying number of steps, although the difficulty increases tremendously as

the number of steps increases as seen in [20]. In our experiments, we predict the next three blocks using the

first five blocks.

5.3 Experiments

We discussed the rich annotations in Home Action Genome (HOMAGE) that allows us to explore multiple

aspects previously not possible due to the lack of such datasets. CCAU utilizes cooperative and compositional

learning to learn improved representations for action understanding. Co-training with other modalities such as

audio imparts additional structure and knowledge to individual modalities, also leading to improved single-

view performance. We design and discuss multiple quantitative experiments to verify the validity of our

claims. We also conduct qualitative experiments to gain deeper insights into our approach. In this section,

we briefly go over our experiment framework. Additional details are provided in the appendix.

5.3.1 Dataset

HOMAGE provides a rich source of videos of human actions and multiple synchronized modalities repre-

senting complementary information about the action sequence. The hierarchical annotations in the dataset

allow us to understand relationships between atomic actions and how they interact with each other to create

higher-order actions.



CHAPTER 5. COOPERATIVE COMPOSITIONAL UNDERSTANDING 49

5.3.2 Dataset Statistics

There are three splits in our dataset; 1,388 train segments and two test splits containing 198 and 166 segments

each. Each segment includes synchronized videos from multiple views: one ego-view video and multiple

third-person views, resulting in 1,752 segments and 5,700 videos in total. Each segment has a high-level

activity category. Atomic actions are annotated in each of these videos. There are 20,039 training, 2,062 and

2,468 atomic action segments in the train split and the two test splits respectively, resulting in 24,569 atomic

action segments and 78,261 videos in total. For each atomic action, we annotate the start and end frame, and

the atomic action category. Note that, unlike activity labels, each atomic action segment can be assigned with

multiple atomic action labels due to overlapping or the hierarchical nature of the ontology.

5.3.3 Modalities

The dataset contains synchronized multi-view videos grouped by action segments. Each segment contains an

ego-view video and multiple third-person view videos. On average, there are more than 3 views per action

segment. For both training and testing, we treat ego-view as one modality and all third-person view videos

as another. Another rich source of information is the audio data and annotated scene graphs. The presence

of complementary information, not found in RGB videos allows us to learn improved representations for our

actions.

5.3.4 Implementation Details

Following our design discussed earlier to allow inference using individual modalities, we use separate en-

coders for each. We use different designs as mentioned in Section 5.2.1.

5.3.5 Images

In all of our experiments, we treat ego-view as one modality and all third-person view videos as another. We

resize each input frame to the size of 128x128. We employ a 3D-ResNet similar to [24] as the encoder f(·).
Following [20], we only expand the convolutional kernels present in the last two residual blocks to be 3D

ones and use 3D-ResNet18 for our experiments, denoted as ResNet18. A weak aggregation function g(·)
is used to learn a strong encoder f(·). Specifically, we use a one-layer Convolutional Gated Recurrent Unit

(ConvGRU) with kernel size (1, 1) as g(·). The weights are shared amongst all spatial positions in the feature

map. This design allows the aggregation function to propagate features in the temporal axis.

We use a dropout [27] with p = 0.1 to compute the hidden state at each time step. A shallow two-layer

perceptron is used as the predictive function φ(·). Recall z′j = Pool(zj) where z′j ∈ RD. We utilize stacked

max pool layers as Pool(·). To construct blocks to pass to the network, we uniformly choose one out of every

3 frames. Then, they are grouped into 8 blocks containing 5 frames each. Since the videos are usually 30fps,

each block roughly covers 0.5 seconds and 8 blocks sums to about 4 seconds worth of action. Given the 256D
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Method Audio Ego 3rd Person

Single Modality 28.5 31.3 21.8
Cooperative Ours 33.3 37.7 24.7

Static KD 28.5 32.3 21.8
Cooperative KD 32.1 32.1 23.5

Table 5.1: Video classification accuracy. Cooperative Ours outperforms the baselines. Cooperative KD
performs better than its counterparts, further validating benefits of cooperative learning.

final representations, we pass this through fully connected layers to compute the final classification where we

use a dropout of p = 0.5.

5.3.6 Audio

To process audio clips, we convert audio to MP3 format, compute log-mel spectrograms [1], and pass it

through a VGG19-like convolutional architecture. We sample fixed intervals of the spectrogram image to

represent the action clip. Similar to the image encoder, we have fully connected layers to perform classifica-

tion.

5.3.7 Scene Graphs

We use ground-truth scene graphs to predict action labels. For each given frame, we fetch the scene graph

that is the closest to this frame. We encode the scene graph as a matrix with dimensions representing the

categories of objects and that of relationships. We flatten the matrix to get the scene graph input features. For

the feature encoder, we use 3 layers of linear layers with ReLU and hidden dimensions of 256. We employ a

dropout rate of 0.5 before the final fc layer.

5.4 Quantitative Results

In this section, we analyze various aspects of our proposed model. To objectively evaluate model perfor-

mance, classification accuracy is utilized as a proxy for learned representation quality. Evaluation is per-

formed on two different splits of HOMAGE. Although models have access to other modalities during train-

ing, this is not the case during inference. Therefore, evaluation only involves inference using individual

modalities. However, we see an improvement despite this constraint due to co-training. We also study the

improvement imparted through compositional learning with both high-level action and atomic-action labels.
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5.4.1 Comparisons with Baselines

In this section, we investigate the effectiveness of cooperative multi-modal learning for action understand-

ing. We study the impact of cooperative learning and compare the performance to knowledge distillation

approaches.

Impact of Cooperation.

Our co-operative training approach hinges on the assumption that multi-modal information helps in improv-

ing overall representation quality. To verify our hypothesis, we study the performance of CCAU compared

along with a few other comparable approaches. (1) Single Modality Training (SM) - Training of modalities

independently (2) Cooperative Ours Training (CT) - Co-Training of all modalities and individual inference.

Table 5.1 summarizes our results demonstrating a consistent improvement in performance across modalities.

Comparison with Knowledge Distillation.

Given the potential applicability of student-teacher approaches in this setting, we also study their perfor-

mance compared to our approach. We study two variants. (1) Static Knowledge Distillation (SKD) - We

transfer knowledge from other trained modalities into the ego-view encoder. (2) Cooperative Knowledge

Distillation (CKD) - To isolate the effect of cooperation leading to improved performance, we also propose

a cooperative version of knowledge distillation that allows all modalities to simultaneously improve (details

in the appendix). Table 5.1 summarizes our results demonstrating the performance difference between these

approaches. We notice a performance improvement when utilizing cooperative KD compared to the static

variant. CT outperforms CKD even though both allow cooperation, due to the incorrect student-teacher hier-

archy even with a symmetric knowledge distillation setup. CT allows cooperation in a softer manner without

an implicit assumption of hierarchy.

Impact of Additional Modalities

We saw the benefits of Cooperative Training in the previous section and established the performance improve-

ments accompanying training with multiple modalities. In this section, we look at the implications modalities

have on performance by studying the impact of training with multiple modalities. We consider 1) Training

each modality separately; 2) Joint training of multi-camera views, i.e., Ego and 3rd Person RGB video clips,

and 3) Joint training of multi-camera views with ego-centric audio clips.

Activity Classification. Table 5.2 summarizes the results of our approach trained with different modalities.

Compared with training with single views individually, co-training with the two video views and video +

audio consistently improves the performance together with more modalities.

Atomic Action Classification. We also investigate the impact of cooperative training on multi-target classi-

fication for atomic actions. Table 5.3 summarizes our results. The Mean Average Precision scores for each

modality are reported.
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Method Audio Ego 3rd

Single Modality 28.5 31.3 21.8
Coop - Ego + 3rd - 35.1 23.5

Coop - Ego + 3rd + Aud 33.3 37.7 24.7

Table 5.2: Co-training encoders with different modalities on activity classification. We see a distinct perfor-
mance improvement across modalities as we co-train with increasing number of modes, possibly due to the
presence of rich complementary information.

Method Audio Ego 3rd Person

Single Modality 7.0 20.5 11.7
Cooperative 13.2 28.5 15.3

Table 5.3: Effect of co-training encoders with different modalities on atomic action classification. The num-
bers reported are support weighted mAP scores.

5.4.2 Cooperative Compositional Learning

We analyze the role of both our proposed soft attention module and CCAU’s compositional learning frame-

work.

Impact of Co-training with Attention.

Table 5.4 summarizes the results of the cross-modality co-training experiment with and without attention

module. With attention, the model yields better accuracy on the video modalities compared with its counter-

part. The model can implicitly learn localization and correspondence between views to form representations

with view-invariant information.

Impact of Compositional Learning.

Our compositional learning framework hinges on the assumption that simultaneously learning both activ-

ity labels and atomic action labels leads to improved performance. To verify this hypothesis, we compare

different variants such as (1) train with activity labels, (2) train with atomic-action labels, (3) train with

Method Ego 3rd Person

Cooperative 32.5 19.1
Cooperative with Attention 34.8 20.8

Table 5.4: Effect of co-training encoders using the proposed attention module. We see a consistent per-
formance improvement across both modalities. The 3rd person mode benefits as attention allows potential
localization of the region of interest - despite the lack of dense associations between the ego and 3rd person
view.
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Method Acc mAP
Audio Ego 3rd Person Audio Ego 3rd Person

Cooperative - Activity 28.3 31.1 17.0 - - -
Cooperative - Atomic Actions - - - 5.9 18.5 9.5

Compositional 23.5 32.1 16.2 16.4 26.3 12.2
Cooperative Compositional 29.3 34.9 19.2 21.7 29.3 13.8

Table 5.5: Effect of co-training encoders with images and audio on activity classification. We see a distinct
performance improvement compared to the Ego, 3rd Person Co-Training case; due to the rich complementary
information present in audio encoders. Missing numbers denote the model was not trained for the associated
subtask. Results are averaged over the two test splits.

Method - Ego Atomic Action - mAP
1 shot 5 shot 10 shot 20 shot

Single Modality 22.4 35.3 38.6 40.6
CCAU 28.6 36.9 39.4 49.4

Table 5.6: Compositional learning with few shot learning. With compositional action understanding, CCAU
demonstrates much better generalizability than other baseline, showing the potential of co-learning with
compositional labels in improving action understanding. Results are averaged over the two testing splits.

both activity and atomic actions without cooperation and (4) CCAU - cooperatively train with both video

and atomic actions. In Table 5.5, we see a consistent improvement across both activity and atomic-action

performance.

5.4.3 Few-Shot Compositional Action Learning

We have discussed the benefits of our cooperative and compositional approach. Intuitively, predicting activ-

ities should be easier if we have an idea of the atomic-actions composing the higher-order action. We now

showcase the ability and potential of CCAU to generalize to rare actions.

Setup.

In our few-shot action recognition experiments, we split the 75 action classes into a base set of 60 classes and

a novel set of 15 classes. We use CCAU as our feature extractor. Note that we do not finetune the backbone.

Next, we train each model with only k examples from each novel class, where k = 1, 5, 10, 20. Finally, we

evaluate the trained models on all examples of novel classes in the validation set.

Results.

We report few-shot experiment performance in Table 5.6. CCAU improves the single modality baseline

on all 1, 5, 10, 20-shot experiments. Furthermore, CCAU shows a +6.2% 1-shot and +8.8% 20-shot mAP
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Method Ego-View 3rd Person

SV 31.8 21.8
SS + SV 33.1 24.8

Table 5.7: Effect of self-supervised pre-training on atomic action classification. We see considerable perfor-
mance improvements when initializing our model with pre-training using multi-modal self supervision. This
results in distinctively improved performance compared to random initialization as we’re able to utilize struc-
tural information naturally present in the examples. This demonstrates the additional possibility of utilizing
Home Action Genome in order to evaluate multi modal self-supervision approaches.

improvement.

5.4.4 Additional Results

In order to study the effectiveness of our approach, we perform additional experiments targeting different

features of our proposed model.

Self-Supervised Pre-training

To study the value of multiple viewpoints of the video data, we perform pre-training with the above learning

framework weights to get a self-supervised initialization for our experiment. We first train our model in the

self-supervised setting for 500 epochs. We use the pre-trained weights to initialize the ego-view and third-

person view encoders and train with supervision loss to the same number of epochs as the randomly initialized

baseline. Note that in the supervision phase, each modality is trained separately and no cross-modality loss is

used. Table 5.7 shows that cooperative learning with different modalities results in distinctively improved per-

formance compared to random initialization as we are able to utilize structural information naturally present

in the examples. We also observe that the model with self-supervised pre-training converges faster than the

baseline. This demonstrates the additional possibility of utilizing Home Action Genome to evaluate multi-

modal self-supervision approaches.

Baseline with Oracle Scene Graphs

We provide a baseline for human action classification using oracle scene graphs. This experiment gives a

rough reference of the upper bound of action inference using spatio-temporal information.

We represent the ground-truth scene graph input as a matrix M of size nobj × nrel, with nobj and nrel
be the number of object and relationship categories, respectively, initialized to be filled with 0. We encode

a relationship with object category s, and relationship category r by setting M [s, r] to be 1. The input

representation is then flattened and fed into an MLP-based encoder.
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Table 5.8 shows the performance of activity classification using ground-truth scene graphs, with the en-

coding scheme described above. We observe that the modality of the ground-truth scene graph is very infor-

mative compared with the other modalities, highlighting the potential for scene graph prediction on human

action understanding.

Acc1 Acc3

76.0 91.7

Table 5.8: Classification of activities using ground-truth scene graphs. Results are averaged over the two test
splits.

Multi-Task Loss

As discussed in Section 5.2.3, we utilize two variants for our multi-task losses. The first is an equally

weighed variant where both La and Lv have the same weights, while the other is similar to the one proposed

in [37] utilizing task-dependent uncertainty to automatically weigh losses. The loss is defined as:

Lc = Lv / σ
2
v + La / σ

2
a + log(σv.σa) (5.4)

Where σi refers to the task dependent uncertainty (aleatoric homoscedastic). Although the latter has

shown improved results in numerous settings, we noticed that it led to slower convergence and the perfor-

mance improvements were not consistent across modalities. For this reason, all results reported utilize the

simple equally weighted multi-task loss.

Learning Attention

As mentioned in the main text, we also explore the usage of an attention module that allows auto-learning

of associations between different modalities similar to [61] which do it for audio and visual modalities. We

setup attention in a slightly different manner by predicting weights over the grid. Recall that our features are

arranged in a grid of shape H ′×W ′. We predict H ′×W ′ values αi,j representing the weight of each feature

corresponding to spatial location (i, j). Given an original context c of shape D ×H ′ ×W ′, we extract cagg
from it as given in Eq. (5.2). Note that we generate attention weights for each pair of modalities to capture

the associations between them.

In our experiments, we did not notice any differences between choosing various values of temperature

as it seems the network modulated the learned α’s accordingly. p’s are utilized to infer regions of interest,

as cells with higher p correspond to relevant portions of the modalities. Another thing worth noting is that

this attention module is only used in conjunction with image modalities, as we found attention over an audio

spectrogram was not directly interpretable in the traditional sense.
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Figure 5.2: Visual results for multi-modal attention between ego-centric and third person view. We show four instances
where the left image refers to the third person view, while the right shows the predicted attention weights (White rep-
resents higher importance for attention). As we can see, CCAU is loosely able to predict areas of interest using our
proposed self-supervised losses.

Knowledge Distillation

We discuss Knowledge Distillation briefly in the main text as one of the important baselines in Section 5.3.1.

The framework we used is similar to the famously used one proposed in [26]. Without going into details, the

overall loss is given in Eq. (5.5).

Lkd = α · H(y, σ(zs)) + β · H(σ(zt, τ), σ(zs, τ)) (5.5)

Eq. (5.5) is an instance of matching logit distributions leading to the distillation of knowledge from the

teacher to the student. Where H represents the cross-entropy loss, τ represents the temperature. zs and zt

are outputs for the student and teacher, respectively.

For multiple modalities, the loss is just repeated multiple times for each modality. For our experiments we

use α = 1 and β = 0.1. We choose τ = 2.5 as the models are similar in capacity. We also experiment with

two variants i.e. Static and Cooperative Knowledge Distillation. The difference being Static KD involves

static teachers while the cooperative variants allow all modalities to serve as both students and teachers.

5.5 Qualitative Results

One of the motivating factors behind CCAU was the benefits of co-training different encoders together to

gain higher-order perspectives provided through different modalities. We observe the learned structure across
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Figure 5.3: t-SNE visualization of Ego-View features from CCAU trained with ego, 3rd and audio modali-
ties. The color mapping represents the relationships between the action classes, e.g., Red: Clothes; Green:
Grooming; Blue: Kitchen. CCAU is able to learn meaningful clusters by utilizing compositional information.

modalities results in the emergence of higher-order semantics without additional supervision, e.g., sensible

class relationships and good feature representations. Jointly training with modalities gives rise to better

representations and byproducts such as localization of visual regions of interest.

5.5.1 t-SNE Visualization.

We explore t-SNE visualizations of our learned representations. For clarity, only a few action classes are

displayed. We loosely order the action classes according to their relationships; classes having similar colors

are semantically similar. Fig. 5.3 summarizes our results.
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5.5.2 Multi-Modal Localization.

A by-product of learning attention using contrastive losses is the ability to localize potential points of interest

in images (details in the appendix).

5.6 Conclusion

We introduced Home Action Genome (HOMAGE), a human action recognition benchmark with multiple

modalities and viewpoints with hierarchical activity and atomic action labels. We also proposed CCAU, a

cooperative and compositional learning method to leverage information across multiple modalities along with

action compositions in HOMAGE for better representation learning. Due to the nature of cooperative learn-

ing, CCAU allows inference on individual modalities where no privileged information and other modalities

are available. We demonstrated the benefits of learning atomic-actions compositions leading to significantly

improved results in a few-shot learning setting.

With rich multi-modal data and compositional annotations, HOMAGE facilitates research in subfields

such as multi–modal action recognition and localization, explainable action understanding, and reasoning

with spatio-temporal scene graphs. We hope HOMAGE promotes research in multi-modal cooperative learn-

ing and action understanding using compositions for richer feature representations in human action recogni-

tion as well as raises interest in generalizable video understanding.

(1) Action Localization - Using multiple modalities to perform localization is gaining traction recently.

We hope the presence of rich annotations in HOMAGE allows advancement in multi-modal localization-

related research. (2) Explainable Action Understanding - Explainable visual models are receiving increased

attention recently. Saliency prediction is a popular relevant approach. The presence of actor-object interest

along with multiple modalities leads to robustness (e.g. to occlusions) and can be used to further improve ex-

isting explainable models. (3) Multi-Modal Understanding - There has been a surge in approaches exploiting

multiple modalities of data while reducing the amount of supervision required.
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Conclusions and Future Directions

6.1 Conclusion

The underlying motivation in the ideas presented in this thesis has been reducing the need for supervision to

learn and understand videos. Specifically, we target this task by exploring the combination of self-supervised

learning and multi-modal learning and their combinations. We started off by introducing the benefits of

utilizing multi-modal cues in a self supervised setting and used the cues to propose a cooperative contrastive

learning approach resulting in better learnt representations. Our approach tackles a current drawback of self

supervised methods where they incorrectly encourage semantically similar instance representations to be far

apart simply because they are from different instances. We exploit multi modal cues to alleviate this issue in

our proposed approach, leading to significant gains.

We then shift our focus to utilizing multiple views of our data to improve action understanding. We

discuss our proposed dataset, Home Action Genome, which provides multiple modalities, camera views and

other rich annotations such as hierarchical atomic action labels. Having such rich annotations during training

allows us to impart additional knowledge into our models improving semantic understanding in videos. We

discuss the features of our dataset and touch upon the benefits of having such a richly annotated dataset.

Once we introduce the specifics of Home Action Genome, we proceed to discuss our proposed approach,

Cooperative Compositional Action Understanding, which allows us to use these modalities, camera views

and annotations during training to improve the learnt video representations. We discuss numerous experi-

ments highlighting different aspects of our approach and how it leads to improved performance even while

performing inference without having access to other modalities.

Through these discussions, we demonstrate how utilizing readily available information in the form of mul-

tiple modalities and injecting intuition and information from real world through atomic action compositions,

allows us to reduce the need for supervision and still obtain competitive performance. We also demonstrate

the potential of self-supervised learning when used in conjunction with such approaches. We hope this en-

courages research in this direction allowing future machine learning algorithms to learn with less data and
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become robust using the implicit information present in existing datasets.

6.2 Future Directions and Applications

We have explored self-supervised learning and multi-modal learning along with their intersection to aid action

understanding in videos. We took a look at its implications on reducing the amount of supervision through

numerous quantitative and qualitative results. We also explored using multiple views of our data during

training to improve performance at inference time without having access to other modalities. Finally, we

investigated how adding real world intuition and information through injecting atomic action compositions

helps robustness and performance. There are, however, many more applications and experiments for which

our approach and dataset can be used. We briefly discuss a few potential applications in this section.

6.2.1 Action Localization

Action localization has been a popular task for a while now and using multiple modalities to achieve it

is gaining traction recently. As discussed earlier, different modalities provide complementary information

which can be used to improve model performance consequently helping in action localization. We hope the

presence of rich annotations in HOMAGE allows advancement in multi-modal localization-related research.

6.2.2 Action Alignment in Videos

Action alignment across videos is a useful task to infer associations and similarities between videos. We have

demonstrated the potential of performing action alignment even in the absence of labelled data earlier. We

hope our proposed approach encourages work in this direction.

6.2.3 Explainable Action Understanding

Explainable visual models are receiving increased attention recently. Saliency prediction is a popular relevant

approach. The presence of actor-object interest along with multiple modalities leads to robustness (e.g.

to occlusion) and can be used to further improve existing explainable models. The presence of intuitive

annotations in HOMAGE can allow us to explore this direction.

6.2.4 Multi-modal Action Understanding

There has been a surge in approaches exploiting multiple modalities of data while reducing the amount of

supervision required. The approaches discussed in this thesis i.e. our cooperative self supervised approach

and our cooperative compositional approach designed for HOMAGE demonstrate this through numerous

experiments and results. Having access to a rich dataset such as HOMAGE with numerous modalities can

allow research in this direction.
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6.2.5 Privacy Aware Action Understanding

We have seen that our cooperative training strategy allows us to observe improved action recognition per-

formance even when only a single modality is used during inference, suggesting training on HOMAGE

improves performance with no need for other modalities during inference. Although we have only explored

audio-visual data in our experiments here, future sensor-fusion work can further exploit the other modalities

we have released. Privacy-aware recognition has started gaining popularity where audio-visual modalities

may be avoided. Access to sensor info allows future research to tackle this challenge effectively by improv-

ing performance of such modalities during inference by cooperatively training them together initially. Such

a combination is not seen in existing datasets and we hope HOMAGE aids future researchers.
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